zbMATH — the first resource for mathematics

Bypass transition in boundary layers subject to strong pressure gradient and curvature effects. (English) Zbl 07173490
Summary: This paper aims at characterizing the bypass transition in boundary layers subject to strong pressure gradient and curvature effects. A series of highly resolved large-eddy simulations of a high-pressure turbine vane are performed, and the primary focus is on the effects of free-stream turbulence (FST) states on transition mechanisms. The turbulent fluctuations that have convected from the inlet first interact with the blunt blade leading edge, forming vortical structures wrapping around the blade. For cases with relatively low-level FST, streamwise streaks are observed in the suction-side boundary layer, and the instabilities of the streaks cause the breakdown to turbulence. Moreover, the varicose mode of streak instability is predominant in the adverse pressure gradient region, while the sinuous mode is more common in the (weak) favourable pressure gradient region. On the other hand, for cases with higher levels of FST, the leading-edge structures are more irregularly distributed and no obvious streak instability is observed. Accordingly, the transition onset occurs much earlier, through the breakdown caused by interactions between vortical structures. Comparing between different cases, it is the competing effect between the FST intensity and the stabilizing pressure gradient that decides the path to transition and also the transition onset, whereas the integral length scale of FST affects the scales of the streamwise streaks in the boundary layer. Furthermore, while the streaks in the low-level FST cases are mainly induced by leading-edge vortical structures, the corresponding fluctuations show a stage of algebraic growth despite the weak favourable pressure gradient and curvature.
76 Fluid mechanics
Full Text: DOI
[1] Abu-Ghannam, B. J. & Shaw, R.1980Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Engng Sci.22 (5), 213-228.
[2] Alam, M. & Sandham, N. D.2000Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech.410, 1-28. · Zbl 0959.76035
[3] Andersson, P., Berggren, M. & Henningson, D. S.1999Optimal disturbances and bypass transition in boundary layers. Phys. Fluids11 (1), 134-150. · Zbl 1147.76308
[4] Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S.2001On the breakdown of boundary layer streaks. J. Fluid Mech.428, 29-60. · Zbl 0983.76025
[5] Araya, G., Castillo, L. & Hussain, F.2015The log behaviour of the Reynolds shear stress in accelerating turbulent boundary layers. J. Fluid Mech.775, 189-200. · Zbl 1403.76025
[6] Arts, T., Lambertderouvroit, M. & Rutherford, A. W.1990 Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations. NASA STI/Recon Tech. Rep. N 91.
[7] Asai, M., Konishi, Y., Oizumi, Y. & Nishioka, M.2007Growth and breakdown of low-speed streaks leading to wall turbulence. J. Fluid Mech.586, 371-396. · Zbl 1118.76003
[8] Asai, M., Minagawa, M. & Nishioka, M.2002The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech.455, 289-314. · Zbl 1147.76300
[9] Bhaskaran, R. & Lele, S. K.2010Large eddy simulation of free-stream turbulence effects on heat transfer to a high-pressure turbine cascade. J. Turbul.11 (6), 1-15.
[10] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)47, 80-96. · Zbl 1297.76073
[11] Brandt, L., Schlatter, P. & Henningson, D. S.2004Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech.517, 167-198. · Zbl 1131.76326
[12] Brinkerhoff, J. R. & Yaras, M. I.2015Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence. J. Fluid Mech.781, 52-86. · Zbl 1359.76154
[13] Durbin, P. A. & Wu, X.2007Transition beneath vortical disturbances. Annu. Rev. Fluid Mech.39, 107-128. · Zbl 1296.76061
[14] Fransson, J. H. M.2017 Free-stream turbulence and its influence on boundary-layer transition. In 10th International Symposium on Turbulence and Shear Flow Phenomena, pp. 6D-5. Begell House.
[15] Goldstein, M. E. & Wundrow, D. W.1998On the environmental realizability of algebraically growing disturbances and their relation to Klebanoff modes. Theor. Comput. Fluid Dyn.10 (1-4), 171-186. · Zbl 0910.76014
[16] Gostelow, J. P., Blunden, A. R. & Walker, G. J.1992Effects of free-stream turbulence and adverse pressure gradients on boundary layer transition. Trans. ASME J. Turbomach.116, 392-404.
[17] Herbert, T.1984 Analysis of the subharmonic route to transition in boundary-layers. AIAA Paper 84-0009.
[18] Herbert, T.1988Secondary instability of boundary layers. Annu. Rev. Fluid Mech.20, 487-526.
[19] Hunt, J. C. R., Wray, A. A. & Moin, P.1988Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2, vol. 1, pp. 193-208. Center for Turbulence Research Report CTR-S88.
[20] Jacobs, R. G. & Durbin, P. A.1998Shear sheltering and the continuous spectrum of the Orr-Sommerfeld equation. Phys. Fluids10 (8), 2006-2011. · Zbl 1185.76578
[21] Jacobs, R. G. & Durbin, P. A.2001Simulations of bypass transition. J. Fluid Mech.428, 185-212. · Zbl 0983.76027
[22] Jiménez, J.2018Coherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[23] Jones, L. E., Sandberg, R. D. & Sandham, N. D.2008Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech.602, 175-207. · Zbl 1144.76050
[24] Katz, Y., Seifert, A. & Wygnanski, I.1990On the evolution of the turbulent spot in a laminar boundary layer with a favourable pressure gradient. J. Fluid Mech.221, 1-22.
[25] Kendall, J.1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695.
[26] Kendall, J. M.1991Studies on laminar boundary-layer receptivity to freestream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R.), pp. 23-30. ASME.
[27] Kennedy, C. A., Carpenter, M. H. & Lewis, R. M.2000Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Maths35 (3), 177-219. · Zbl 0986.76060
[28] Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B. & Henningson, D. S.2016Edge states as mediators of bypass transition in boundary-layer flows. J. Fluid Mech.801, R2. · Zbl 1284.76106
[29] Kim, J. W. & Lee, D. J.2003Characteristic interface conditions for multiblock high-order computation on singular structured grid. AIAA J.41 (12), 2341-2348.
[30] Kim, J. W. & Sandberg, R. D.2012Efficient parallel computing with a compact finite difference scheme. Comput. Fluids58, 70-87. · Zbl 1365.65196
[31] Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M.1962The three-dimensional nature of boundary-layer instability. J. Fluid Mech.12, 1-34. · Zbl 0131.41901
[32] Klein, M., Sadiki, A. & Janicka, J.2003A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys.186 (2), 652-665. · Zbl 1047.76522
[33] Kreilos, T., Khapko, T., Schlatter, P., Duguet, Y., Henningson, D. S. & Eckhardt, B.2016Bypass transition and spot nucleation in boundary layers. Phys. Rev. Fluids1 (4), 043602. · Zbl 1284.76106
[34] Luchini, P.2000Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech.404, 289-309. · Zbl 0959.76022
[35] Lundell, F. & Alfredsson, P. H.2004Streamwise scaling of streaks in laminar boundary layers subjected to free-stream turbulence. Phys. Fluids16 (5), 1814-1817. · Zbl 1186.76340
[36] Mandal, A. C., Venkatakrishnan, L. & Dey, J.2010A study on boundary-layer transition induced by free-stream turbulence. J. Fluid Mech.660, 114-146. · Zbl 1205.76019
[37] Marxen, O. & Zaki, T. A.2019Turbulence in intermittent transitional boundary layers and in turbulence spots. J. Fluid Mech.860, 350-383. · Zbl 1415.76279
[38] Matsubara, M. & Alfredsson, P. H.2001Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech.430, 149-168. · Zbl 0963.76509
[39] Michelassi, V., Wissink, J. & Rodi, W.2002Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments. Flow Turbul. Combust.69 (3-4), 295-329. · Zbl 1113.76339
[40] Morkovin, M. V.1969On the many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S.), pp. 1-31. Springer.
[41] Muck, K. C., Hoffmann, P. H. & Bradshaw, P.1985The effect of convex surface curvature on turbulent boundary layers. J. Fluid Mech.161, 347-369.
[42] Mukund, R., Viswanath, P. R., Narasimha, R., Prabhu, A. & Crouch, J. D.2006Relaminarization in highly favourable pressure gradients on a convex surface. J. Fluid Mech.566, 97-115. · Zbl 1104.76016
[43] Nagarajan, S., Lele, S. K. & Ferziger, J. H.2007Leading-edge effects in bypass transition. J. Fluid Mech.572, 471-504. · Zbl 1145.76025
[44] Nicoud, F. & Ducros, F.1999Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust.62 (3), 183-200. · Zbl 0980.76036
[45] Nix, A. C.2004 Effects of high intensity, large-scale freestream combustor turbulence on heat transfer in transonic turbine blades. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, US.
[46] Ovchinnikov, V., Choudhari, M. M. & Piomelli, U.2008Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech.613, 135-169. · Zbl 1151.76498
[47] Patel, V. C.1965Calibration of the preston tube and limitations on its use in pressure gradients. J. Fluid Mech.23 (1), 185-208.
[48] Pichler, R., Sandberg, R. D., Laskowski, G. & Michelassi, V.2017High-fidelity simulations of a linear HPT vane cascade subject to varying inlet turbulence. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, p. V02AT40A001. ASME.
[49] Sandberg, R. D. & Michelassi, V.2019The current state of high-fidelity simulations for main gas path turbomachinery components and their industrial impact. Flow Turbul. Combust.102 (4), 797-848.
[50] Sandberg, R. D., Michelassi, V., Pichler, R., Chen, L. & Johnstone, R.2015Compressible direct numerical simulation of low-pressure turbines—Part I: Methodology. Trans. ASME J. Turbomach.137 (5), 051011.
[51] Sandberg, R. D. & Sandham, N. D.2006Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J.44 (2), 402-405.
[52] Schlatter, P., Brandt, L., De Lange, H. C. & Henningson, D. S.2008On streak breakdown in bypass transition. Phys. Fluids20 (10), 101505.
[53] Skote, M., Haritonidis, J. H. & Henningson, D. S.2002Varicose instabilities in turbulent boundary layers. Phys. Fluids14 (7), 2309-2323.
[54] Smith, C. R. & Metzler, S. P.1983The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech.129, 27-54.
[55] Spalart, P. R. & Strelets, M. KH.2000Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech.403, 329-349. · Zbl 0972.76046
[56] Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H.1994Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech.281, 193-218.
[57] Wheeler, A. P. S., Sandberg, R. D., Sandham, N. D., Pichler, R. & Michelassi, V.2016Direct numerical simulations of a high-pressure turbine vane. Trans. ASME J. Turbomach.138 (7), 071003.
[58] White, F. M.1991Viscous Fluid Flow. McGraw-Hill.
[59] Wu, X. & Durbin, P. A.2001Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J. Fluid Mech.446, 199-228. · Zbl 0997.76032
[60] Wundrow, D. W. & Goldstein, M. E.2001Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech.426, 229-262. · Zbl 1010.76029
[61] Zaki, T. A.2013From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust.91 (3), 451-473.
[62] Zaki, T. A., Wissink, J. G., Rodi, W. & Durbin, P. A.2010Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech.665, 57-98. · Zbl 1225.76147
[63] Zhao, Y., Xiong, S., Yang, Y. & Chen, S.2018Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Phys. Rev. Fluids7 (3), 1-16.
[64] Zhao, Y., Yang, Y. & Chen, S.2016aEvolution of material surfaces in the temporal transition in channel flow. J. Fluid Mech.793, 840-876. · Zbl 1382.76132
[65] Zhao, Y., Yang, Y. & Chen, S.2016bVortex reconnection in the late transition in channel flow. J. Fluid Mech.802, R4.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.