×

The dynamical evolution of 3-space in a higher dimensional steady state universe. (English) Zbl 1266.83170

Summary: We investigate a class of cosmological solutions of Einstein’s field equations in higher dimensions with a cosmological constant and an ideal fluid matter distribution as a source. We discuss the dynamical evolution of the universe subject to two constraints that (i) the total volume scale factor of the universe is constant and (ii) the effective energy density is constant. We obtain various interesting new dynamics for the external space that yield a time varying deceleration parameter including oscillating cases when the flat/curved external and curved/flat internal spaces are considered. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the extra dimensions.

MSC:

83F05 Relativistic cosmology
83E15 Kaluza-Klein and other higher-dimensional theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C15 Exact solutions to problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Overduin, J.M., Wesson, P.S.: Kaluza-Klein gravity. Phys. Rep. 283, 303-378 (1997) · doi:10.1016/S0370-1573(96)00046-4
[2] Lidsey, J.E., Wands, D., Copeland, E.J.: Superstring cosmology. Phys. Rep. 337, 343-492 (2000) · doi:10.1016/S0370-1573(00)00064-8
[3] Chodos, A., Detweiler, S.: Where has the fifth dimension gone? Physical Review D 21, 2167 (1980) · doi:10.1103/PhysRevD.21.2167
[4] Freund, P.G.O.: Kaluza Klein cosmologies. Nucl. Phys. B 209, 146-156 (1982) · doi:10.1016/0550-3213(82)90106-7
[5] Dereli, T., Tucker, R.W.: Dynamical reduction of internal dimensions in the early universe. Phys. Lett. B 125, 133-135 (1983) · doi:10.1016/0370-2693(83)91252-2
[6] Barrow, J.D., Stein-Schabes, J.: The stability of some Kaluza-Klein cosmological models. Phys. Lett. B 167, 173-177 (1986) · doi:10.1016/0370-2693(86)90594-0
[7] Bringmann, T., Eriksson, M., Gustafsson, M.: Cosmological evolution of homogeneous universal extra dimensions. Phys. Rev. D 68, 063516 (2003) · doi:10.1103/PhysRevD.68.063516
[8] Akarsu, Ö., Dereli, T.: A four-dimensional \[\Lambda\] CDM-Type cosmological model induced from higher dimensions using a kinematical constraint, (2012) arXiv:1201.4545 [gr-qc]. · Zbl 1266.83169
[9] Bleyer, U., Zhuk, A.: Kasner-like, inflationary and steady-state solutions in multi-dimensional cosmology. Astron. Nachr. 317, 161-173 (1996) · Zbl 0854.53079 · doi:10.1002/asna.2113170302
[10] Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347-356 (1981) · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[11] Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389-393 (1982) · doi:10.1016/0370-2693(82)91219-9
[12] Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009-1038 (1998) · doi:10.1086/300499
[13] Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565-586 (1999) · Zbl 1368.85002 · doi:10.1086/307221
[14] Komatsu, E., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011) · doi:10.1088/0067-0049/192/2/18
[15] Quevedo, F.: Lectures on string/brane cosmology. Class. Quantum Gravity 19, 5721-5779 (2002) · Zbl 1016.83001 · doi:10.1088/0264-9381/19/22/304
[16] Zeldovich, Ya B.: The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 11, 381-393 (1968) · doi:10.1070/PU1968v011n03ABEH003927
[17] Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1-23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[18] Sahni, V., Starobinsky, A.: The case for a positive cosmological \[\Lambda \]-term. Int. J. Mod. Phys. D 9, 373-443 (2000)
[19] Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753-1936 (2006) · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[20] Sahdev, D., No article title, Perfect-fluid higher-dimensional cosmologies. Phys. Rev. D, 30, 2495-2507 (1984)
[21] Sato, H.: Dynamics of higher dimensional universe models. Prog. Theor. Phys. 72, 98-105 (1984) · Zbl 1046.83521 · doi:10.1143/PTP.72.98
[22] Ishihara, H.: Kaluza-Klein inflation. Prog. Theor. Phys. 72, 376-378 (1984) · doi:10.1143/PTP.72.376
[23] Demaret, J.; Hanquin, J-L, No article title, Anisotropic Kaluza-Klein cosmologies. Phys. Rev. D, 31, 258-261 (1985) · doi:10.1103/PhysRevD.31.258
[24] Okada, Y.: Evolution of the Kaluza-Klein universe. Nucl. Phys. B 264, 197-220 (1986) · doi:10.1016/0550-3213(86)90479-7
[25] de Leon, J.P., Wesson, P.S.: Exact solutions and the effective equation of state in Kaluza-Klein theory. J. Math. Phys. 34, 4080-4092 (1993) · Zbl 0780.35111 · doi:10.1063/1.530028
[26] Yearsley, J., Barrow, J.D.: Cosmological models of dimensional segregation. Class. Quantum Gravity 13, 2693-2706 (1996) · Zbl 0859.58041 · doi:10.1088/0264-9381/13/10/009
[27] Mohammedi, N.: Dynamical compactification, standard cosmology, and the accelerating universe. Phys. Rev. D 65, 104018 (2002) · doi:10.1103/PhysRevD.65.104018
[28] Carroll, S.M., Johnson, M.C., Randall, L.: Dynamical compactification from de Sitter space. J. High Energy Phys. 11, 094 (2009) · doi:10.1088/1126-6708/2009/11/094
[29] Reyes, L.M., Madriz-Aguilar, J.E., Urena-Lopez, L.A.: Cosmological dark fluid from five-dimensional vacuum. Phys. Rev. D 84, 027503 (2011) · doi:10.1103/PhysRevD.84.027503
[30] Rainer, M., Zhuk, A.: Einstein and Brans-Dicke frames in multidimensional cosmology. Gen. Relativ. Gravit. 32, 79-104 (2000) · Zbl 0976.83055 · doi:10.1023/A:1001848500339
[31] Ho, C.M., Kephart, T.W.: Inflatonless inflation. Int. J. Mod. Phys. A 27, 1250151 (2012) · Zbl 1277.83111 · doi:10.1142/S0217751X12501515
[32] Bondi, H., Gold, T.: The steady-state theory of the expanding universe. Mon. Not. R. Astron. Soc. 108, 252-270 (1948) · Zbl 0031.09603
[33] Hoyle, F., Narlikar, J.V.: Mach’s principle and the creation of matter. Proc. R. Soc. 273, 1-11 (1963) · Zbl 0116.44601 · doi:10.1098/rspa.1963.0072
[34] Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, New York (2006) · Zbl 1106.51009
[35] Novello, M.; Bergliaffa, SEP, No article title, Bouncing cosmologies. Pyhs. Rep., 463, 127-213 (2008)
[36] Barrow, J.D., Dabrowski, M.P.: Oscillating universes. Mon. Not. R. Astron. Soc. 275, 850 (1995)
[37] Sahni, V., Toporensky, A.: Cosmological hysteresis and the cyclic universe. Phys. Rev. D 85, 123542 (2012) · doi:10.1103/PhysRevD.85.123542
[38] Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with \[w<-1\] Causes a Cosmic Doomsday. Phys. Rev. Lett. 91, 071301 (2003)
[39] Nesseris, S., Perivolaropoulos, L.: Crossing the phantom divide: theoretical implications and observational status. J. Cosmol. Astropart. Phys. 0701, 018 (2007) · doi:10.1088/1475-7516/2007/01/018
[40] Cai, Y.F., Saridakis, E.N., Setare, M.R., Xia, J.Q.: Quintom cosmology: theoretical implications and observations. Phys. Rep. 493, 1-60 (2010) · doi:10.1016/j.physrep.2010.04.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.