×

New and extended applications of the natural and Sumudu transforms: fractional diffusion and Stokes fluid flow realms. (English) Zbl 1386.44003

Ruzhansky, Michael (ed.) et al., Advances in real and complex analysis with applications. Selected papers based on the presentations at the 24th international conference on finite or infinite dimensional complex analysis and applications, 24ICFIDCAA, Jaipur, India, August 22–26, 2016. Singapore: Birkhäuser/Springer (ISBN 978-981-10-4336-9/hbk; 978-981-10-4337-6/ebook). Trends in Mathematics, 107-120 (2017).
Summary: The Natural transform is used to solve fractional differential equations for various values of fractional degrees \(\alpha \) , and various boundary conditions. Fractional diffusion problems solutions are analyzed, followed by Stokes-Ekman boundary thickness problem. Furthermore, the Sumudu transform is applied for fluid flow problems, such as Stokes, Rayleigh, and Blasius, toward obtaining their solutions and corresponding boundary layer thickness.
For the entire collection see [Zbl 1381.00029].

MSC:

44A15 Special integral transforms (Legendre, Hilbert, etc.)
35R11 Fractional partial differential equations
35Q35 PDEs in connection with fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Z.H. Khan, W.A. Khan, N-transform properties and applications. NUST J. Eng. Sci. 1(1), 127-133 (2008)
[2] R. Silambarasan, F.B.M. Belgacem, Applications of the natural transform to Maxwell’s equations, in PIERS Proceedings in Suzhou, China. Sept 12-16 (2011), pp 899-902
[3] F.B.M. Belgacem, R. Silambarasan, Theory of natural transform. Int. J. Math. Eng. Sci. Aeorosp. (MESA) 3(1), 99-124 (2012) · Zbl 1250.44002
[4] F.B.M. Belgacem, R. Silambarasan, Maxwell’s equations solutions by means of the Natural transform. Spec. Iss. Complex Dyn. Syst. Nonlinear Methods Math. Models Thermodyn. Int. J. Math. Eng. Sci. Aerosp. (MESA), 3(3), 313-323 (2012) · Zbl 1269.35042
[5] F.B.M. Belgacem, R. Silambarasan, The Generalized nth order Maxwell’s equations, in PIERS Proceedings Held in Moscow Technical University of Radio Engineering, Electronics and Automatics (MIREA) (Moscow, Russia, 2012), pp 500-503
[6] F.B.M. Belgacem, R. Silambarasan, Advances in the natural transform. AIP Conf. Proc. 1493(1), 106-110 (2012) · doi:10.1063/1.4765477
[7] D. Loonker, P.K. Banerji, Solution of fractional ordinary differential equations by natural transform. Int. J. Math. Eng. Sci. 2(12), 1-7 (2013) · Zbl 1298.44001
[8] D. Loonker, P.K. Banerji, Natural transform for distribution and Boehmian spaces. Math. Eng. Sci. Aerosp. 4(1), 69-76 (2013) · Zbl 1270.46035
[9] S.K.Q. Al-Omari, On the applications of natural transform. Int. J. Pure Appl. Math. 85(4), 729-744 (2013) · Zbl 1339.90245 · doi:10.12732/ijpam.v85i4.9
[10] D. Loonker, P.K. Banerji, Natural transform and solution of integral equations for distribution spaces. American. J. Math. Sci. 3(1), 65-72 (2014)
[11] S. Maitama, A new approach to linear and nonlinear Schr \(\ddot{o}\) dinger equations using the natural decomposition method. Int. Math. Forum 9(17), 835-847 (2014) · Zbl 1360.35226 · doi:10.12988/imf.2014.4483
[12] S.K.Q. Al-Omari, On some q-analogues of the natural transform and further investigations, arXiv:1505.02179v1 [math.CA] (2015), pp. 1-16
[13] D. Poltem, P. Totassa, A. Wiwatwanich, Application of decomposition method for natural transform. Asian. J. of Appl. Sci. 3(6), 905-909 (2015)
[14] K. Shah, M. Junaid, N. Ali, Extraction of laplace, Sumudu, fourier and Mellin transform from the natural transform. J. Appl. Environ. Biol. Sci. 5(9), 108-115 (2015)
[15] A.S. Abdel-Rady, S.Z. Rida, A.A.M. Arafa, H.R. Abedl-Rahim, Natural transform for solving fractional models. J. Appl. Math. Phys. 3, 1633-1644 (2015) · doi:10.4236/jamp.2015.312188
[16] M. Junaid, Application of natural transform to Newtonian fluid problems. Eur. Int. J. Sci. Technol. 5(4), 138-147 (2016)
[17] S. Maitama, A hybrid Natural transform Homotopy perturbation method for solving fractional partial differential equations. Int. J. Differ. Equ. 2016, 1-7 (2016) · Zbl 1349.35051 · doi:10.1186/s13662-015-0739-5
[18] M. Omran, A. Kiliman, Natural transform of fractional order and some properties, in Cogent Mathematics (2016), pp. 1-8 · Zbl 1438.44002
[19] S. Maitama, A new analytical approach to linear and nonlinear partial differential equations. Nonlinear Stud. 23(4), 675-684 (2016) · Zbl 1360.35226
[20] S. Maitama, Explicit solution of solitary wave equation with compact support by natural homotopy perturbation method. Math. Eng. Sci. Aerosp. 7(4), 625-635 (2016)
[21] F.B.M. Belgacem, A.A. Karaballi, S.L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. (MPE) 3, 103-118 (2003) · Zbl 1068.44001 · doi:10.1155/S1024123X03207018
[22] F.B.M. Belgacem, A.A. Karaballi, Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. (JAMSA) 91083, 1-23 (2005) · Zbl 1115.44001
[23] F.B.M. Belgacem, Introducing and analysing deeper Sumudu properties. Nonlinear Stud. J. (NSJ) 13(1), 23-41 (2006) · Zbl 1102.44001
[24] M.G.M. Hussain, F.B.M. Belgacem, Transient solutions of Maxwell’s equations based on Sumudu transform. Progr. Electromagn. Res. 74, 273-289 (2007) · doi:10.2528/PIER07050904
[25] F.B.M. Belgacem, Sumudu transform applications to Bessel’s functions and equations. Appl. Math. Sci. 4(74), 3665-3686 (2010) · Zbl 1220.44001
[26] Q.K. Katatbeh, F.B.M. Belgacem, Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. (NSJ) 18(1), 99-112 (2011) · Zbl 1223.44001
[27] P. Goswami, F.B.M. Belgacem, Fractional differential equations solutions through a Sumudu rational. Nonlinear Stud. J. (NSJ) 19(4), 591-598 (2012) · Zbl 1300.34016
[28] F.B.M. Belgacem, R. Silambarasan, Laplace transform analytical restructure. Appl. Math. (AM) 4, 919-932 (2013) · doi:10.4236/am.2013.46128
[29] H. Bulut, H.M. Baskonus, F.B.M. Belgacem, The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. J. Abstr. Appl. Anal. Article ID 203875, 1-6 (2013) · Zbl 1297.34005
[30] Z. Hammouch, T. Mekkaoui, F.B.M. Belgacem, Numerical simulations for a variable order fractional Schnakenberg model. AIP Conf. Proc. 1637, 1450-1455 (2014) · doi:10.1063/1.4907312
[31] S.T. Demiray, H. Bulut, F.B.M. Belgacem, Sumudu transform method for analytical solutions of fractional type ordinary differential equations. J. Math. Probl. Eng. (2014) · Zbl 1394.34022
[32] D.S. Tuluce, H. Bulut, F.B.M. Belgacem, Sumudu transform method for analytical solutions of fractional type ordinary differential equations. Math. Probl. Eng. Spec. Iss. Par. Fract. Equ. Appl. 1-6 (2014) · Zbl 1394.34022
[33] T. Mekkaoui, H. Zakia, F.B.M. Belgacem, A. El Abbassi, Fractional-order nonlinear systems: chaotic dynamics, numerical simulation and circuits design, chapter, in Fractional Dynamics (2015), pp. 343-356
[34] F.B.M. Belgacem, V. Gulati, P. Goswami, A. Aljouiee, On generalized fractional differential equations solutions: Sumudu transform solutions and applications, Chap. 22 in De Gruyter open, in Fractional Dynamics (2015), pp. 382-393
[35] H. Zakia, T. Mekkaoui, F.B.M. Belgacem, Double-diffusive natural convection in porous cavity heated by an internal boundary. Math. Eng. Sci. Aerosp. 7(3), 453-466 (2016)
[36] F.B.M. Belgacem, C. Cattani, Sumudu transform of Weierstrass functions, in CMES Conference (2016)
[37] F.B.M. Belgacem, R. Silambarasan, Further distinctive investigations of the Sumudu transform, in Submitted to ICNPAA Conference, France, and Accepted in AIP Conferences Proceedings (2016)
[38] F.B.M. Belgacem, R. Silambarasan, Sumudu transform of Dumont bimodular Jacobi elliptic functions for arbitrary powers, in Submitted to ICNPAA Conference, France, and Accepted in AIP Conferences Proceedings (2016)
[39] F.B.M. Belgacem, R. Silambarasan, A distinctive Sumudu treatment of trigonometric functions. J. Comput. Appl. Math. 312, 74-81 (2017) · Zbl 1351.44001 · doi:10.1016/j.cam.2015.12.036
[40] F.B.M. Belgacem, E.H. Al-Shemas, R. Silambarasan, Sumudu computation of the transient magnetic field in a lossy medium. Appl. Math. Inf. Sci. 11(1), 209-217 (2017) · doi:10.18576/amis/110126
[41] A. Erd \(\acute{e}\) lyi, Tables of Integral Transforms, vol. 1 (McGraw-Hill Inc., 1954) · Zbl 0055.36401
[42] T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers (Birkhäuser Inc., Boston, 2007) · Zbl 1104.35001
[43] L. Debnath, D. Bhatta, Integral Transforms and their Applications (Chapman & Hall/CRC, Boca Raton, 2007) · Zbl 1310.44001
[44] L. Bernardin et al., Maple Programming Guide (Waterloo Maple Inc., 2011)
[45] F.B.M. Belgacem, Sumudu applications to Maxwell’s equations. PIERS Online 5(4), 355-360 (2009) · doi:10.2529/PIERS090120050621
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.