×

Smooth interface crack between two bonded dissimilar orthotropic elastic media under shear loading. (English) Zbl 1477.74102

Summary: An interface crack in an orthotropic bi-material is studied under applied loading. Crack faces are assumed to contact smoothly and only slide relatively due to exertion of applied loading. A singular elastic field disturbed by the interface crack is concerned, and the Fourier transform technique is used to solve the singular elastic field. Dual integral equations involving trigonometric functions are derived and solved analytically. An analytic solution is given and explicit expressions for the full elastic fields at any position are obtained for constant and linear shear loading at the crack faces. Stress intensity factors and energy release rate are given explicitly. The obtained results show that no oscillation behavior occurs for smooth interface cracks, but only the usual square-root singularity near the crack tip. The influence of material properties on the crack initiation angle is presented graphically.

MSC:

74R10 Brittle fracture
74E10 Anisotropy in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afshar, A.; Ardakani, S. H.; Mohammadi, S., Stable discontinuous space-time analysis of dynamic interface crack growth in orthotropic bi-materials using oscillatory crack tip enrichment functions, Int. J. Mech. Sci., 140, 557-580 (2018)
[2] Agrawal, A.; Karlsson, A. M., Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique, Int. J. Fract., 141, 75-98 (2006) · Zbl 1197.74088
[3] Aminpour, M.; Holsapple, K., Finite element solutions for propagating interface cracks with singularity elements, Eng. Fract. Mech., 39, 3, 451-468 (1991)
[4] Anaraki, A. R.G.; Fakoor, M., Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model, Mater. Sci. Eng. A, 527, 27, 7184-7191 (2010)
[5] Antipov, Y., An interface crack between elastic materials when there is dry friction, J. Appl. Math. Mech., 59, 2, 273-287 (1995) · Zbl 0919.73249
[6] Caimmi, F.; Pavan, A., A mode II crack problem with sliding contact in an orthotropic strip, Int. J. Fract., 153, 2, 93-104 (2008) · Zbl 1273.74428
[7] Chattopadhyay, L., Analytical solution for an orthotropic elastic plate containing cracks, Int. J. Fract., 134, 3-4, 305-317 (2005) · Zbl 1196.74091
[8] Comninou, M., The interface crack, J. Appl. Mech., 44, 631-636 (1977) · Zbl 0369.73092
[9] Das, S.; Mukhopadhyay, S.; Prasad, R., Stress intensity factor of an edge crack in bonded orthotropic materials, Int. J. Fract., 168, 1, 117-123 (2010) · Zbl 1283.74012
[10] de Moura, M.; Goncalves, J.; Silva, F., A new energy based mixed-mode cohesive zone model, Int. J. Solids Struct., 102, 112-119 (2016)
[11] Fakoor, M.; Rafiee, R., Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion, Strength Mater., 45, 3, 378-385 (2013)
[12] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2007), Academic Press: Academic Press London · Zbl 1208.65001
[13] Jernkvist, L. O., Fracture of wood under mixed mode loading: I. Derivation of fracture criteria, Eng. Fract. Mech., 68, 5, 549-563 (2001)
[14] Jernkvist, L. O., Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies, Eng. Fract. Mech., 68, 5, 565-576 (2001)
[15] Kassir, M. K.; Tse, S., Moving Griffith crack in an orthotropic material, Int. J. Eng. Sci., 21, 4, 315-325 (1983) · Zbl 0502.73080
[16] Leski, A., Implementation of the virtual crack closure technique in engineering FE calculations, Finite Elem. Anal. Des., 43, 3, 261-268 (2007)
[17] Li, X. F.; Lee, K. Y., Closed-form solution for an orthotropic elastic strip with a crack perpendicular to the edges under arbitrary anti-plane shear, ZAMM Z. Angew. Math. Mech., 89, 5, 370-382 (2009) · Zbl 1162.74016
[18] Li, X.-F.; Lee, K. Y.; Tang, G.-J., Kink angle and fracture load for an angled crack subjected to far-field compressive loading, Eng. Fract. Mech., 82, 172-184 (2012)
[19] Li, X. F.; Liu, G. L.; Lee, K. Y., Effects of T-stresses on fracture initiation for a closed crack in compression with frictional crack faces, Int. J. Fract., 160, 1, 19-30 (2009) · Zbl 1273.74508
[20] Li, M.; Meng, L.; Hinneh, P.; Wen, P., Finite block method for interface cracks, Eng. Fract. Mech., 156, 25-40 (2016)
[21] Li, X.-F.; Tang, G.-J.; Shen, Z.-B.; Lee, K. Y., Axisymmetric problems of a penny-shaped crack at the interface of a bi-material under shear and compression, Int. J. Solids Struct., 69-70, 403-414 (2015)
[22] Li, X.-F.; Tang, G.-J.; Shen, Z.-B.; Lee, K. Y., Interface crack embedded in a bi-material plane under shear and compression, Mech. Mater., 85, 80-93 (2015)
[23] Li, X.-F.; Tang, G.-J.; Shen, Z.-B.; Lee, K. Y., Stress intensify factors for an external circular crack at the interface of a bi-material in shear-compression, Int. J. Solids Struct., 64-65, 221-231 (2015)
[24] Mak, A. F.; Keer, L. M.; Chen, S. H.; Lewis, J. L., A no-slip. interface crack, J. Appl. Mech., 47, 347-350 (1980) · Zbl 0431.73079
[25] Mall, S.; Murphy, J. F.; Shottafer, J. E., Criterion for mixed mode fracture in wood, J. Eng. Mech., 109, 3, 680-690 (1983)
[26] Nairn, J. A., Generalized crack closure analysis for elements with arbitrarily-placed side nodes and consistent nodal forces, Int. J. Fract., 171, 1, 11-22 (2011) · Zbl 1283.74097
[27] Nettles, A. T., Basic mechanics of laminated composite plates, (NASA Reference Publication, vol. 1351 (1994), Marshall Space Flight Center. MSFC: Marshall Space Flight Center. MSFC Alabama)
[28] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations (2008), Chapman & Hall/CRC: Chapman & Hall/CRC New York · Zbl 1154.45001
[29] Romanowicz, M.; Seweryn, A., Verification of a non-local stress criterion for mixed mode fracture in wood, Eng. Fract. Mech., 75, 10, 3141-3160 (2008)
[30] Shul, C. W.; Lee, K. Y., Dynamic response of subsurface interface crack in multi-layered orthotropic half-space under anti-plane shear impact loading, Int. J. Solids Struct., 38, 3563-3574 (2001) · Zbl 0976.74059
[31] Wang, Y.; Chiara, C.; Haim, W.; Elena, B., XFEM with high-order material-dependent enrichment functions for stress intensity factors calculation of interface cracks using Irwin’s crack closure integral, Eng. Fract. Mech., 178, 148-168 (2017)
[32] Wang, C.; Rubio-Gonzalez, C.; Mason, J., The dynamic stress intensity factor for a semi-infinite crack in orthotropic materials with concentrated shear impact loads, Int. J. Solids Struct., 38, 1265-1280 (2001) · Zbl 0967.74030
[33] Williams, J.; Birch, M., Mixed mode fracture in anisotropic media, (Cracks and Fracture (1976), ASTM International)
[34] Yao, X.; Chen, J.; Jin, G.; Arakawa, K.; Takahashi, K., Caustic analysis of stress singularities in orthotropic composite materials with mode-I crack, Compos. Sci. Technol., 64, 917-924 (2004)
[35] Yoonsuk, C.; Jaeboong, C.; Youngjin, K.; Genki, Y., Numerical calculation of energy release rates by virtual crack closure technique, KSME Int. J., 18, 11, 1996-2008 (2004)
[36] Zhong, X. C.; Wu, B., Thermoelastic analysis for an opening crack in an orthotropic material, Int. J. Fract., 173, 1, 49-55 (2012) · Zbl 1306.74056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.