×

Numerical simulation of electrical engineering devices. (English) Zbl 1358.78067


MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bíró, O., Preis, K., Dyczij-Edlinger, R., Badics, Z. and Riedler, H. (1992), ”Coupled electric, thermal and elastic simulation of BaTiO_{3} PTC thermistor”, Int. Journ. Applied Electromagn. in Materials, Vol. 3, pp. 151-5.
[2] Codes Hermes and Agros (n.d.), available at: .
[3] Database of material parameters (n.d.), available at: .
[4] Dolezel, I., Karban, P., Ulrych, B., Pantelyat, M., Matyukhin, Y. and Gontarowskiy, P. (2007), ”Computer model of thermoelastic actuator solved as coupled contact problem”, COMPEL, Vol. 26 No. 4, pp. 1063-72. , · Zbl 1143.78328 · doi:10.1108/03321641111133127
[5] Dolezel, I., Karban, P., Ulrych, B., Pantelyat, M., Matyukhin, Y., Gontarowskiy, P. and Shulzhenko, N. (2008), ”Limit operation regimes of actuators working on principle of thermoelasticity”, IEEE Trans. Magn., Vol. 44 No. 6, pp. 810-3. , · Zbl 1358.78067 · doi:10.1108/03321641111133127
[6] Holman, J.P. (2001), Heat Transfer, McGraw-Hill, New York, NY.
[7] Iatcheva, I. and Stancheva, R. (2002), ”Coupled field computation in teaching electrical engineering”, Proceedings of the 10th Conference on IGTE, Graz, Austria, September 16-18, pp. 163-8.
[8] Kim, J.K., Kwak, S.Y., Cho, S.M., Jung, H.K., Chung, T.K. and Jung, S.Y. (2006), ”Optimization of multilayer buried magnet synchronous machine combined with stress and thermal analysis”, IEEE Trans. Magn., Vol. 42 No. 4, pp. 1023-6. , · Zbl 1358.78067 · doi:10.1108/03321641111133127
[9] Pantelyat, M. (1998), ”Coupled electromagnetic, thermal and elastic-plastic simulation of multi-impulse inductive heating”, Int. Journ. Applied Electromagn. Mech., Vol. 9 No. 1, pp. 11-24. · Zbl 1358.78067 · doi:10.1108/03321641111133127
[10] Pantelyat, M. (1999), ”Numerical analysis of impulse electromagnetic fields in soft ferromagnetic materials”, Int. Journ. Applied Electromagn. Mech., Vol. 10 No. 3, pp. 185-92. · Zbl 1358.78067 · doi:10.1108/03321641111133127
[11] Pantelyat, M. and Shulzhenko, N. (2006), ”Finite element analysis of electromagnetic field and losses in a turbogenerator rotor”, Proceedings of the 6th Conference on CEM, Aachen, Germany, April 20-21, pp. 151-2.
[12] Pantelyat, M., Matyukhin, Y., Gontarowsky, P., Dolezel, I., Karban, P. and Ulrych, B. (2006), ”Computer simulation of actuators working on principle of thermoelasticity”, Proceedings of the 17th International Conference on ICEM, Chania, Greece, September 2-5, pp. 272-1-272-7.
[13] Podgorniy, A., Gontarowsky, P., Kirkatsch, B., Matyukhin, Y. and Khavin, G. (1989), Tasks of Contact Interaction in Construction Elements, Naukova Dumka, Kiev.
[14] Shulzhenko, N., Gontarowskiy, P., Matyukhin, Y., Pantelyat, M., Dolezel, I. and Ulrych, B. (2004), ”Finite element analysis of electromagnetic, thermal, and stress-strain state of joints during induction-heating based assembly and disassembly”, Proceedings of the 11th Conference on IGTE, Graz, Austria, September 13-15, pp. 334-9.
[15] Stratton, J.A. (2007), Electromagnetic Theory, Wiley, Hoboken, NJ. · JFM 67.1119.01
[16] Timoshenko, S. and Goodier, J.Y. (1951), Theory of Elasticity, McGraw-Hill, New York, NY. · Zbl 0045.26402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.