×

Experimental and theoretical analysis of the limits to ductility of type 304 stainless steel sheet. (English) Zbl 1179.74002

Summary: The forming behaviour of a type 304 stainless steel sheet is investigated. The strain-hardening behaviour is characterised in uniaxial tension tests, and the forming limits at necking and at fracture are determined using the Marciniak punch test. The results, complemented by measurements of the fraction of a martensite formed by plastic straining, are compared with the predictions derived from the constitutive laws proposed by T. Iwamoto and T. Tsuta [Int. J. Plasticity 16, No. 7, 791–804 (2000); Int. J. Plasticity 18, No. 11, 1583–1606 (2002)] for steels exhibiting transformation induced plasticity, and from a flow localisation analysis developed along the lines of the model of Z. Marciniak and K. Kuczinski [Int. J. Mech. Sci. 9, No. 9, 609–620 (1967)]. A good account of the whole results can be obtained by considering the limits to ductility imposed by ductile fracture.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74N05 Crystals in solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersson, R., Odén, M., Powell, J., 2006. A load path independent equation to describe the phase transformation during plastic deformation of stainless steels. In: Proc. 9th ESAFORM Conference on Material Forming, Glasgow, April 2006; Andersson, R., Odén, M., Powell, J., 2006. A load path independent equation to describe the phase transformation during plastic deformation of stainless steels. In: Proc. 9th ESAFORM Conference on Material Forming, Glasgow, April 2006
[2] Barlat, F., Crystallographic texture, anisotropic yield surface and forming limits of sheet metals, Mat. Sci. Eng., 91, 55-72 (1987)
[3] Barlat, F.; Lege, D. J.; Brem, J. C., A six-component yield function for anisotropic materials, Int. J. Plasticity, 7, 697-712 (1991)
[4] Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J. C.; Hayashida, Y.; Lege, D. J.; Matsui, K.; Murtha, S. J.; Hattori, S.; Becker, R. C.; Makosey, S., Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids, 45, 1727-1763 (1997)
[5] Bragard, A., The contribution of CRM to the FLD concept, (Koistinen, D. P.; Wang, N. M., Mechanics of Sheet-Metal Forming (1978), Plenum Press: Plenum Press New York), 9-19
[6] Brunet, M.; Mguil, S.; Morestin, F., Analytical and experimental studies of necking in sheet forming metal processes, J. Mat. Process. Technol., 80-81, 40-46 (1998)
[7] Cao, J.; Yao, H.; Karafillis, A.; Boyce, M. C., Prediction of localized necking in sheet metal using a general anisotropic yield function, Int. J. Plasticity, 16, 1105-1129 (2000) · Zbl 0996.74067
[8] Chan, K. S., Marciniak-Kuczynski approach for calculating forming limit diagrams, (Wagoner, R. H.; Chan, K. S.; Keeler, S. P., Forming Limit Diagrams: Concepts, Methods and Applications (1989), TMS), 73-110
[9] Cockroft, M. G.; Latham, D. J., Ductility and the workability of metals, J. Inst. Met., 96, 33-39 (1968)
[10] Cullity, B. D., Elements of X-Ray Diffraction (1978), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0043.43903
[11] Drücker, D. C., Relation of experiments to mathematical theories of plasticity, J. Appl. Mech., 16, 349-360 (1949) · Zbl 0036.39903
[12] Dudzinski, D.; Molinari, A., Perturbation analysis of thermoviscoplastic instabilities in biaxial loading, Int. J. Solids Structures, 27, 601-628 (1991) · Zbl 0734.73032
[13] Ferron, G., Influence of heat generation and conduction on plastic stability under uniaxial tension, Mat. Sci. Eng., 49, 241-248 (1981)
[14] Ferron, G.; Mliha-Touati, M., Determination of the forming limits in planar-isotropic and temperature-sensitive sheet metals, Int. J. Mech. Sci., 27, 121-133 (1985)
[15] Gänser, H. P.; Werner, E. A.; Fischer, F. D., Forming limit diagrams: a micromechanical approach, Int. J. Mech. Sci., 42, 2041-2054 (2004) · Zbl 0977.74558
[16] Goodwin, G. M., Application of the strain analysis to sheet metal forming in the press shop, La Metallurgia Italiana, 8, 767-772 (1968)
[17] Greenwood, G. W.; Johnson, R. H., The deformation of metals under small stresses during phase transformations, Proc. Roy. Soc. London A, 283, 403 (1965)
[18] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth. Part I. yield criteria and flow rules for porous ductile materials, J. Eng. Mat. Technol., 99, 2-15 (1977)
[19] Hecker, S. S.; Stout, M. G.; Staudhammer, K. P.; Smith, J. L., Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behaviour, Metall. Trans. A, 13, 619-626 (1982)
[20] Hill, R., On discontinuous plastic states, with special reference to localized necking in thin sheets, J. Mech. Phys. Solids, 1, 19-30 (1952)
[21] Hutchinson, J. W.; Neale, K. W., Sheet necking-III. Strain-rate effects, (Koistinen, D. P.; Wang, N. M., Mechanics of Sheet-Metal Forming (1978), Plenum Press: Plenum Press New York), 269-285
[22] Iwamoto, T.; Tsuta, T.; Tomita, Y., Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics, Int. J. Mech. Sci., 40, 173-182 (1998)
[23] Iwamoto, T.; Tsuta, T., Computational simulation of the dependence of the austenitic grain size on the deformation behaviour of trip steels, Int. J. Plasticity, 16, 791-804 (2000) · Zbl 0947.74559
[24] Iwamoto, T.; Tsuta, T., Computational simulation on deformation behaviour of CT specimens of trip steel under mode I loading for evaluation of fracture toughness, Int. J. Plasticity, 18, 1583-1606 (2002) · Zbl 1062.74581
[25] Karafillis, A.; Boyce, M. C., A general anisotropic yield criterion using bounds and transformation weighting tensors, J. Mech. Phys. Solids, 41, 1859-1886 (1993) · Zbl 0792.73029
[26] Keeler, S. P.; Backofen, W. A., Plastic instability and fracture in sheets stretched over rigid punches, ASM Trans. Quarterly, 56, 25-48 (1964)
[27] Marciniak, Z.; Kuczynski, K., Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 9, 609-620 (1967)
[28] Mesrar, R.; Fromentin, S.; Makkouk, R.; Martiny, M.; Ferron, G., Limits to the ductility of metal sheets subjected to complex strain-paths, Int. J. Plasticity, 14, 391-411 (1998) · Zbl 0942.74010
[29] Miller, M. P.; McDowell, D. L., Modelling large strain multiaxial effects in fcc polycrystals, Int. J. Plasticity, 12, 875-902 (1996)
[30] Neale, K. W.; Chater, E., Limit strain predictions for strain-rate sensitive anisotropic sheets, Int. J. Mech. Sci., 22, 563-574 (1980) · Zbl 0439.73029
[31] Needleman, A.; Triantafyllidis, N., Void growth and local necking in biaxially stretched sheets, J. Eng. Mat. Technol., 99, 164-169 (1978)
[32] Olson, G. B.; Cohen, M., Kinetics of strain-induced martensitic transformation, Metall. Trans. A, 6, 791-795 (1975)
[33] Ragab, A. R.; Saleh, Ch.; Zaafarani, N. N., Forming limit diagrams for kinematically hardened voided sheet metals, J. Mat. Process. Technol., 128, 302-312 (2002)
[34] Serri, J.; Martiny, M.; Ferron, G., Finite element analysis of the effects of martensitic phase transformation in trip steel sheet forming, Int. J. Mech. Sci., 87, 884-901 (2005) · Zbl 1192.74286
[35] Sowerby, R.; Duncan, J. L., Failure in sheet metal in biaxial tension, Int. J. Mech. Sci., 13, 217-229 (1971)
[36] Stören, S.; Rice, J. R., Localized necking in thin sheets, J. Mech. Phys. Solids, 23, 421-441 (1975) · Zbl 0328.73029
[37] Stringfellow, R. G.; Parks, D. M.; Olson, G. B., A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metall. Mat., 40, 1703-1716 (1992)
[38] Takuda, H.; Mori, K.; Takakura, N.; Yamaguchi, K., Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture, Int. J. Mech. Sci., 42, 785-798 (2000) · Zbl 1065.74618
[39] Talyan, V.; Wagoner, R. H.; Lee, J. K., Formability of stainless steel, Metall. Mat. Trans. A, 29, 2161-2172 (1998)
[40] Tomita, Y.; Iwamoto, T., Constitutive modeling of trip steel and its application to the improvement of mechanical properties, Int. J. Mech. Sci., 37, 1295-1305 (1995)
[41] Tomita, Y.; Iwamoto, T., Computational prediction of deformation behaviour of trip steels under cyclic loading, Int. J. Mech. Sci., 43, 2017-2034 (2001) · Zbl 0978.74530
[42] Tourki, Z.; Bargui, H.; Sidhom, H., The kinetics of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel, J. Mat. Process. Technol., 166, 330-336 (2005)
[43] Tvergaard, V., Effect of yield surface curvature and void nucleation on plastic flow localization, J. Mech. Phys. Solids, 35, 43-60 (1987)
[44] Vacher, P.; Dumoulin, S.; Morestin, F.; Mguil-Touchal, S., Bidimensional strain measurement using digital images, Proc. Inst. Mech. Eng. Part C, 213, 811-817 (1999)
[45] Wu, P. D.; Jain, M.; Savoie, J.; MacEwen, S. R.; Tugcu, P.; Neale, K. W., Evaluation of anisotropic yield functions for aluminum sheets, Int. J. Plasticity, 19, 121-138 (2003) · Zbl 1032.74530
[46] Wu, P. D.; MacEwen, S. R.; Lloyd, D. J.; Neale, K. W., A mesoscopic approach for predicting sheet metal formability, Modell. Simul. Mat. Sci. Eng., 12, 511-527 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.