×

A novel approach for multiple mobile objects path planning: parametrization method and conflict resolution strategy. (English) Zbl 1255.90025

Summary: We present a new approach containing two steps to determine conflict-free paths for mobile objects in two and three dimensions with moving obstacles. Firstly, the shortest path of each object is set as goal function which is subject to collision-avoidance criterion, path smoothness, and velocity and acceleration constraints. This problem is formulated as calculus of variation problem (CVP). Using parametrization method, CVP is converted to time-varying nonlinear programming problems (TNLPP) and then resolved. Secondly, move sequence of object is assigned by priority scheme; conflicts are resolved by multilevel conflict resolution strategy. Approach efficiency is confirmed by numerical examples.

MSC:

90B06 Transportation, logistics and supply chain management
90C30 Nonlinear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. van den Berg, M. Overmars, in: Intelligent Robots and Systems, 2005 (IROS 2005), 2005, pp. 430-435.; J. van den Berg, M. Overmars, in: Intelligent Robots and Systems, 2005 (IROS 2005), 2005, pp. 430-435.
[2] Borzabadi, A.; Kamyad, A.; Farahi, M.; Mehne, H., Appl. Math. Comput., 170, 1418 (2005)
[3] I. Suh, H. Yeo, J. Kim, J. Ryoo, S. Oh, C. Lee, B. Lee, in: Intelligent Robots and Systemsʼ 96 (IROS 1996), vol. 1, 1996, pp. 332-339.; I. Suh, H. Yeo, J. Kim, J. Ryoo, S. Oh, C. Lee, B. Lee, in: Intelligent Robots and Systemsʼ 96 (IROS 1996), vol. 1, 1996, pp. 332-339.
[4] G. Sánchez, J. Latombe, in: Robotics and Automation, 2002 (ICRA 2002), vol. 2, 2002, pp. 2112-2119.; G. Sánchez, J. Latombe, in: Robotics and Automation, 2002 (ICRA 2002), vol. 2, 2002, pp. 2112-2119.
[5] Clark, C.; Bretl, T.; Rock, S., (Aerospace Conference Proceedings, vol. 7 (2002), IEEE), 7
[6] LaValle, S.; Hutchinson, S., IEEE Trans. Robot. Autom., 14, 912 (2002)
[7] Yang, J.; Qu, Z.; Wang, J.; Conrad, K., IEEE Trans. Syst. Man Cybern. A Syst. Humans, 40, 721 (2010)
[8] Laumond, J.; Jacobs, P.; Taix, M.; Murray, R., IEEE Trans. Robot. Autom., 10, 577 (1994)
[9] Zamirian, M.; Kamyad, A.; Farahi, M., Phys. Lett. A, 373, 3439 (2009) · Zbl 1233.90253
[10] Skrjanc, I.; Klancar, G., Robot. Auton. Syst., 58, 1 (2010)
[11] Erdmann, M.; Lozano-Perez, T., Algorithmica, 2, 477 (1987)
[12] C. Warren, in: Robotics and Automation, 1990, Proceedings, 1990, pp. 500-505.; C. Warren, in: Robotics and Automation, 1990, Proceedings, 1990, pp. 500-505.
[13] Kamyad, A.; Mehne, H., Int. J. Eng. Sci., 14, 143 (2003)
[14] Teo, K.; Jennings, L.; Lee, H.; Rehbock, V., J. Austral. Math. Soc. B, 40, 314 (1999)
[15] Zamirian, M.; Farahi, M.; Nazemi, A., Appl. Math. Comput., 190, 1479 (2007)
[16] Rubio, J., Control and Optimization: The Linear Treatment of Nonlinear Problems (1986), Manchester University Press: Manchester University Press UK · Zbl 1095.49500
[17] Tang, G., Syst. Control Lett., 54, 429 (2005)
[18] Jaddu, H.; Shimemura, E., Opt. Control Appl. Meth., 20, 21 (1999)
[19] Stoer, J.; Bulirsch, R., Introduction to Numerical Analysis (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1004.65001
[20] Bennewitz, M.; Burgard, W.; Thrun, S., Robot. Auton. Syst., 41, 89 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.