×

Current trends in substructural logics. (English) Zbl 1334.03017

Summary: This paper briefly overviews some of the results and research directions. In the area of substructural logics from the last couple of decades. Substructural logics are understood here to include relevance logics, linear logic, variants of Lambek calculi and some other logics that are motivated by the idea of omitting some structural rules or making other structural changes in LK, the original sequent calculus for classical logic.

MSC:

03B47 Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allwein, G., & Dunn, J.M. (1993). Kripke models for linear logic. Journal of Symbolic Logic, 58, 514-545. · Zbl 0795.03013 · doi:10.2307/2275217
[2] Anderson, A.R., & Belnap, N.D. (1975). Entailment: The logic of relevance and necessity, Vol. I. Princeton: Princeton University Press. · Zbl 0323.02030
[3] Anderson, A.R., Belnap, N.D., & Dunn, J.M. (1992). Entailment: The logic of relevance and necessity, Vol. II. Princeton: Princeton University Press. · Zbl 0921.03025
[4] Avron, A (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57, 161-184. · Zbl 0652.03018 · doi:10.1016/0304-3975(88)90037-0
[5] Belnap, N.D. (1982). Display logic. Journal of Philosophical Logic, 11, 375-417. · Zbl 0509.03008
[6] Belnap, N.D. (1990). Linear logic displayed. Notre Dame Journal of Formal Logic, 31, 14-25. · Zbl 0706.03043 · doi:10.1305/ndjfl/1093635329
[7] Belnap, N.D., & Wallace, J.R. (1961). A decision procedure for the system EI¯\(E_{\overline{I}}\) of entailment with negation. Technical Report 11, Contract No. SAR/609 (16), Office of Naval Research, New Haven. · Zbl 0143.24902
[8] Bimbó, K. The decidability of the intensional fragment of classical linear logic. (19 pages, submitted for publication). · Zbl 1331.03014
[9] Bimbó, K. (2001). Semantics for structurally free logics LC+. Logic Journal of the IGPL, 9, 525-539. · Zbl 0986.03019 · doi:10.1093/jigpal/9.4.525
[10] Bimbó, K (2005). Admissibility of cut in LC with fixed point combinator. Studia Logica, 81, 399-423. · Zbl 1089.03012 · doi:10.1007/s11225-005-4651-y
[11] Bimbó, K. (2007). Relevance logics. In D. Jacquette (Ed.), Philosophy of logic, Handbook of the philosophy of science (D. Gabbay, P. Thagard and J. Woods, eds.) (Vol. 5, pp. 723-789). North-Holland: Elsevier. · Zbl 0317.02018
[12] Bimbó, K. (2009). Dual gaggle semantics for entailment. Notre Dame Journal of Formal Logic, 50, 23-41. · Zbl 1190.03024 · doi:10.1215/00294527-2008-025
[13] Bimbó, K. (2012). Combinatory logic: Pure, applied and typed.. Discrete mathematics and its applications. Boca Raton: CRC Press. · Zbl 1245.03001
[14] Bimbó, K. (2014). Proof theory: Sequent calculi and related formalisms.. Discrete mathematics and its applications. Boca Raton: CRC Press.
[15] Bimbó, K., & Dunn, J.M. (2002). Four-valued logic. Notre Dame Journal of Formal Logic, 42, 171-192. · Zbl 1034.03021
[16] Bimbó, K., & Dunn, J.M. (2008). Generalized Galois logics: Relational semantics of nonclassical logical calculi, CSLI lecture notes (Vol. 188). Stanford: CSLI Publications. · Zbl 1222.03001
[17] Bimbó, K., & Dunn, J.M. (2009). Symmetric generalized Galois logics. Logica Universalis, 3, 125-152. · Zbl 1255.03033 · doi:10.1007/s11787-009-0004-3
[18] Bimbó, K., & Dunn, J.M. (2010). Calculi for symmetric generalized Galois logics. In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 307-343). Vashon: Linguistic Analysis.
[19] Bimbó, K., & Dunn, J.M. (2012). New consecution calculi for R→t \(R_{\rightarrow }^{\,t}\). Notre Dame Journal of Formal Logic, 53, 491-509. · Zbl 1345.03046
[20] Bimbó, K., & Dunn, J.M. (2013). On the decidability of implicational ticket entailment. Journal of Symbolic Logic, 78, 214-236. · Zbl 1275.03159 · doi:10.2178/jsl.7801150
[21] Bimbó, K., & Dunn, J.M. (2014). Extracting BB′\(^{\prime }\) IW inhabitants of simple types from proofs in the sequent calculus LT→t \(LT_{\rightarrow }^{\, t}\) for implicational ticket entailment. Logica Universalis, 8, 141-164. · Zbl 1344.03028
[22] Bimbó, K., & Dunn, J.M. Modalities in lattice-R. (32 pages, ms.) · Zbl 0316.02029
[23] Birkhoff, G. (1967). Lattice theory, AMS colloquium publications, 3rd edn. (Vol. 25). Providence: American Mathematical Society. · Zbl 0126.03801
[24] Blok, W.J., & Raftery, J.G. (2004). Fragments of R-mingle. Studia Logica, 78, 59-106. · Zbl 1067.03029 · doi:10.1007/s11225-005-0106-8
[25] Brady, R.T. (Ed.) (2003). Relevant logics and their rivals. A continuation of the work of R. Sylvan, R. Meyer, V. Plumwood and R. Brady (Vol. II). Burlington: Ashgate. · Zbl 1398.03011
[26] Church, A. (1951). The weak theory of implication In A. Menne, A. Wilhelmy & H. Angsil (Eds.), , Kontrolliertes Denken, Untersuchungen zum Logikkalkül und zur Logik der Einzelwissenschaften (pp. 22-37). Karl Alber: Komissions-Verlag. · Zbl 0958.03014
[27] Cook, S.A. (1971). The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on the Theory of Computing (pp. 151-158).
[28] Curry, H.B. (1963). Foundations of mathematical logic. New York: McGraw-Hill Book Company. (Dover, New York, NY, 1977). · Zbl 0163.24209
[29] Došen, K., & Schroeder-Heister, P. (1993). Substructural logics. Oxford: Clarendon.
[30] Dunn, J.M. (1973). A ‘Gentzen system’ for positive relevant implication, (abstract). Journal of Symbolic Logic, 38, 356-357.
[31] Dunn, J.M. (1976). A Kripke-style semantics for R-mingle using a binary accessibility relation. Studia Logica, 35, 163-172. · Zbl 0328.02010 · doi:10.1007/BF02120878
[32] Dunn, J.M. (1976). Quantification and RM. Studia Logica, 35, 315-322. · Zbl 0359.02014 · doi:10.1007/BF02282493
[33] Dunn, J.M. (1986). Relevance logic and entailment In D. Gabbay & F. Guenthner (Eds.), , Handbook of philosophical logic, 1st edn. (Vol. 3, pp. 117-224).. Dordrecht: D. Reidel. · Zbl 0875.03051
[34] Dunn, J.M. (1991). Gaggle theory: An abstraction of Galois connections and residuation with applications to negation, implication, and various logical operators In J. van Eijck (Ed.), , Logics in AI: European workshop JELIA ’90, number 478 in lecture notes in computer science (pp. 31-51). Berlin: Springer. · Zbl 0814.03044
[35] Dunn, J.M. (1993). Partial-gaggles applied to logics with restricted structural rules In K. Došen & P. Schroeder-Heister (Eds.), , Substructural logics (pp. 63-108). Oxford: Clarendon. · Zbl 0941.03521
[36] Dunn, J.M. (1995). Gaggle theory applied to intuitionistic, modal and relevance logic In I. Max & W. Stelzner (Eds.), , Logik und Mathematik. Frege-Kolloquium Jena (pp. 335-368). Berlin: W. de Gruyter. · Zbl 0045.31601
[37] Dunn, J.M., & Hardegree, G.M. (2001). Algebraic methods in philosophical logic, Oxford logic guides (Vol. 41). Oxford: Oxford University Press. · Zbl 1014.03002
[38] Dunn, J.M., & Meyer, R.K. (1997). Combinators and structurally free logic. Logic Journal of the IGPL, 5, 505-537. · Zbl 0878.03008 · doi:10.1093/jigpal/5.4.505
[39] Dunn, J.M., & Restall, G. (2002). Relevance logic In D. Gabbay & F. Guenthner (Eds.), , Handbook of philosophical logic, 2nd edn. (Vol. 6, pp. 1-128).. Amsterdam: Kluwer. · Zbl 0045.31505
[40] Gentzen, G. (1964). Investigations into logical deduction. American Philosophical Quarterly, 1, 288-306.
[41] Giambrone, S. (1985). TW+ and RW+ are decidable. Journal of Philosophical Logic, 14, 235-254. · Zbl 0587.03014 · doi:10.1007/BF00249365
[42] Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1-102. · Zbl 0625.03037 · doi:10.1016/0304-3975(87)90045-4
[43] Goldblatt, R. (2009). Conservativity of Heyting implication over relevant quantification. Review of Symbolic Logic, 2, 310-341. · Zbl 1170.03010 · doi:10.1017/S1755020309090194
[44] Goldblatt, R., & Mares, E.D. (2006). An alternative semantics for quantified relevant logic. Journal of Symbolic Logic, 71, 163-187. · Zbl 1100.03011 · doi:10.2178/jsl/1140641167
[45] Goré, R. (1998). Substructural logics on display. Logic Journal of the IGPL, 6, 451-504. · Zbl 0906.03020 · doi:10.1093/jigpal/6.3.451
[46] Hartonas, C., & Dunn, J.M. (1997). Stone duality for lattices. Algebra Universalis, 37, 391-401. · Zbl 0902.06008 · doi:10.1007/s000120050024
[47] Henkin, L. (1949). The completeness of the first-order functional calculus. Journal of Symbolic Logic, 14, 159-166. · Zbl 0034.00602 · doi:10.2307/2267044
[48] Jónsson, B., & Tarski, A. (1951). Boolean algebras with operators, I. American Journal of Mathematics, 73, 891-939. · Zbl 0045.31505 · doi:10.2307/2372123
[49] Jónsson, B., & Tarski, A. (1952). Boolean algebras with operators, II. American Journal of Mathematics, 74, 127-162. · Zbl 0045.31601 · doi:10.2307/2372074
[50] Kamide, N. (2002). Kripke semantics for modal substructural logics. Journal of Logic, Language and Computation, 11, 453-470. · Zbl 1017.03011 · doi:10.1023/A:1019915908844
[51] Kamide, N. (2003). Normal modal substructural logics with strong negation. Journal of Philosophical Logic, 32, 589-612. · Zbl 1045.03027 · doi:10.1023/B:LOGI.0000003928.44012.57
[52] Kripke, S.A. (1959). The problem of entailment, (abstract). Journal of Symbolic Logic, 24, 324. · Zbl 0091.00902 · doi:10.2307/2964568
[53] Kripke, S.A. (1963). Semantical analysis of modal logic I. Normal modal propositional calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 67-96. · Zbl 0118.01305
[54] Kripke, S.A. (1965). Semantical analysis of intuitionistic logic I. In J.N. Crossley & M.A.E. Dummett (Eds.), Formal Systems and Recursive Functions, Proceedings of the Eighth Logic Colloquium (pp. 92-130). Amsterdam. · Zbl 0137.00702
[55] Kripke, S.A. (1965). Semantical analysis of modal logic II. Non-normal propositional calculi In J.W. Addison, L. Henkin & A. Tarski (Eds.), The theory of models (pp. 206-220). North-Holland, Amsterdam. · Zbl 0163.00502
[56] Lambek, J. (1961). On the calculus of syntactic types In R. Jacobson (Ed.), Structure of language and its mathematical aspects (pp. 166-178). Providence: American Mathematical Society. · Zbl 1034.03021
[57] Lemmon, E.J., Meredith, C.A., Meredith, D., Prior, A.N., & Thomas, I. (1969). Calculi of pure strict implication In J.W. Davis, D.J. Hockney & W.K. Wilson (Eds.), Philosophical logic (pp. 215-250). Dordrecht: D. Reidel.
[58] Lincoln, P., Mitchell, J., Scedrov, A., & Shankar, N. (1992). Decision problems for linear logic. Annals of Pure and Applied Logic, 56, 239-311. · Zbl 0768.03003 · doi:10.1016/0168-0072(92)90075-B
[59] Mares, E.D. (2000). CE is not a conservative extension of E. Journal of Philosophical Logic, 29, 263-275. · Zbl 0958.03014 · doi:10.1023/A:1004731401855
[60] Mares, E.D. (2004). Relevant logic: A philosophical interpretation. Cambridge, UK: Cambridge University Press.
[61] Mares, E.D., & Meyer, R.K. (2001). Relevant logics In L. Goble (Ed.), The Blackwell guide to philosophical logic, Blackwell philosophy guides (pp. 280-308). Oxford: Blackwell Publishers. · Zbl 0986.03019
[62] Meyer, R.K. (1966). Topics in modal and many-valued logic. PhD thesis, University of Pittsburgh, Ann Arbor.
[63] Meyer, R.K. (2004). Ternary relations and relevant semantics. Annals of Pure and Applied Logic, 127, 195-217. · Zbl 1060.03039 · doi:10.1016/j.apal.2003.11.015
[64] Meyer, R.K., & Routley, R. (1972). Algebraic analysis of entailment I. Logique et Analyse, 15, 407-428. · Zbl 0336.02020
[65] Meyer, R.K., & Routley, R. (1973). Classical relevant logics I. Studia Logica, 32, 51-66. · Zbl 0316.02029 · doi:10.1007/BF02123812
[66] Meyer, R.K., & Routley, R. (1974). Classical relevant logics II. Studia Logica, 33, 183-194. · Zbl 0316.02030 · doi:10.1007/BF02120493
[67] Moorgat, M. (2010). Symmetric categorial grammar: residuation and Galois connections In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 143-166).. Vashon: Linguistic Analysis. · Zbl 0795.03013
[68] Morrill, G., & Valentín, O. (2010). Displacement calculus In J. van Benthem & M. Moortgat (Eds.), Festschrift for Joachim Lambek, Linguistic Analysis (Vol. 36, pp. 167-192). Vashon: Linguistic Analysis. · Zbl 0509.03008
[69] Ono, H. (2003). Substructural logics and residuated lattices — an introduction In V.F. Hendricks & J. Malinowski (Eds.), 50 years of Studia Logica, Trends in Logic (Vol. 21, pp. 21193-228).. Amsterdam: Kluwer. · Zbl 1048.03018
[70] Padovani, V. (2013). Ticket Entailment is decidable. Mathematical Structures in Computer Science, 23, 568-607. · Zbl 1280.03014 · doi:10.1017/S0960129512000412
[71] Paoli, F. (2002). Substructural logics: A primer, Trends in Logic (Vol. 13). Dordrecht: Kluwer. · Zbl 1025.03002 · doi:10.1007/978-94-017-3179-9
[72] Pentus, M. (2006). Lambek calculus is NP-complete. Theoretical Compuer Science, 357, 186-201. · Zbl 1104.03013 · doi:10.1016/j.tcs.2006.03.018
[73] Priestley, H.A. (1970). Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society, 2, 186-190. · Zbl 0201.01802 · doi:10.1112/blms/2.2.186
[74] Restall, G. (1995). Display logic and gaggle theory. Reports on Mathematical Logic, 29, 133-146. · Zbl 0858.03036
[75] Restall, G. (2000). An introduction to substructural logics. London: Routledge. · Zbl 1028.03018 · doi:10.4324/9780203252642
[76] Robles, G., & Méndez, J.M. (2006). Converse Ackermann property and constructive negation defined with a negation connective. Logic and Logical Philosophy, 15, 113-130. · Zbl 1134.03015 · doi:10.12775/LLP.2006.007
[77] Rosenthal, K.I. (1990). Quantales and their applications. Number 234 in Pitman research notes in mathematics. Essex, UK and New York: Longman and J. Wiley.
[78] Routley, R., & Meyer, R.K. (1972). The semantics of entailment - II. Journal of Philosophical Logic, 1, 53-73. · Zbl 0317.02018 · doi:10.1007/BF00649991
[79] Routley, R., & Meyer, R.K. (1972). The semantics of entailment - III. Journal of Philosophical Logic, 1, 192-208. · Zbl 0317.02019 · doi:10.1007/BF00650498
[80] Routley, R., & Meyer, R.K. (1973). The semantics of entailment. In H. Leblanc (Ed.), Truth, Syntax and Modality, Proceedings of the Temple University Conference on Alternative Semantics (pp. 194-243). Amsterdam. · Zbl 0317.02017
[81] Routley, R., Meyer, R.K., Plumwood, V., & Brady, R.T. (1982). Relevant logics and their rivals I. Atascadero: Ridgeview Publishing Company.
[82] Seki, T. (2004). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44, 93-109. · Zbl 1071.03009 · doi:10.1305/ndjfl/1082637806
[83] Stone, M.H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40, 37-111. · Zbl 0014.34002
[84] Stone, M.H. (1937). Topological representations of distributive lattices and Brouwerian logics. Časopis pro pěstování matematiky a fysiky, Čast matematická, 67, 1-25. · Zbl 0018.00303
[85] Szabo, M.E. (1969). The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam. · Zbl 0209.30001
[86] Thistlewaite, P.B., McRobbie, M.A., & & Meyer, R.K. (1988). Automated theorem proving in non-classical logics. London: Pitman. · Zbl 0682.68097
[87] Troelstra, A.S. (1992). Lectures on linear logic, CSLI lecture notes (Vol. 29). Stanford: CSLI Publications.
[88] Urquhart, A. (1978). A topological representation theorem for lattices. Algebra Universalis, 8, 45-58. · Zbl 0382.06010 · doi:10.1007/BF02485369
[89] Urquhart, A (1984). The undecidability of entailment and relevant implication. Journal of Symbolic Logic, 49, 1059-1073. · Zbl 0581.03011 · doi:10.2307/2274261
[90] Urquhart, A. (1990). The complexity of decision procedures in relevance logic. In J.M. Dunn & A. Gupta (Eds.), Truth or consequences (pp. 61-76). Amsterdam: Kluwer.
[91] Urquhart, A. (1999). The complexity of decision procedures in relevance logic II. Journal of Symbolic Logic, 64, 1774-1802. · Zbl 0945.03029 · doi:10.2307/2586811
[92] Urquhart, A (2007). Four variables suffice. Australasian Journal of Logic, 5, 66-73. · Zbl 1168.03013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.