×

zbMATH — the first resource for mathematics

On low-frequency variability of the midlatitude ocean gyres. (English) Zbl 1359.86014
Summary: This paper studies the large-scale low-frequency variability of the wind-driven midlatitude ocean gyres and their western boundary currents, such as the Gulf Stream or Kuroshio, simulated with the eddy-resolving quasi-geostrophic model. We applied empirical orthogonal functions analysis to turbulent flow solutions and statistically extracted robust and significant large-scale decadal variability modes concentrated around the eastward jet extension of the western boundary currents. In order to interpret these statistical modes dynamically, we linearized the governing quasi-geostrophic equations around the time-mean circulation and solved for the corresponding full set of linear eigenmodes with their eigenfrequencies. We then projected the extracted decadal variability on the eigenmodes and found that this variability is a multimodal coherent pattern phenomenon rather than a single mode or a combination of several modes as in the flow regimes preceding developed turbulence.

MSC:
86A05 Hydrology, hydrography, oceanography
Software:
ScaLAPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berloff, P.; Hogg, A.; Dewar, W., The turbulent oscillator: a mechanism of low-frequency variability of the wind-driven ocean gyres, J. Phys. Oceanogr., 37, 2363-2386, (2007)
[2] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part I: linear analysis, J. Phys. Oceanogr., 43, 2505-2527, (2013)
[3] Berloff, P.; Kamenkovich, I., On spectral analysis of mesoscale eddies. Part II: nonlinear analysis, J. Phys. Oceanogr., 43, 2528-2544, (2013)
[4] Berloff, P.; Karabasov, S.; Farrar, T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
[5] Berloff, P.; Kravtsov, S.; Dewar, W.; Mcwilliams, J., Ocean eddy dynamics in a coupled ocean-atmosphere model, J. Phys. Oceanogr., 37, 1103-1121, (2007)
[6] Berloff, P. S., On rectification of randomly forced flows, J. Mar. Res., 3, 497-527, (2005)
[7] Berloff, P. S.; Mcwilliams, J. C., Large-scale, low-frequency variability in wind-driven ocean gyres, J. Phys. Oceanogr., 29, 1925-1949, (1999)
[8] Blackford, L.; Choi, J.; Cleary, A.; D’Azevedo, E.; Demmel, J.; Dhillon, I.; Dongarra, J.; Hammarling, S.; Henry, G.; Petitet, A., ScaLAPACK Users’ Guide, (1997), SIAM · Zbl 0886.65022
[9] Chang, K.; Ide, K.; Ghil, M.; Lai, C.-C., Transition to aperiodic variability in a wind-driven double-gyre circulation model, J. Phys. Oceanogr., 31, 1260-1286, (2001)
[10] Davidson, P. A., The dynamics and scaling laws of planetary dynamos driven by inertial waves, Geophys. J. Intl, 198, 1832-1847, (2014)
[11] Deser, C.; Blackmon, M., Surface climate variations over the North Atlantic Ocean during winter: 1900-1989, J. Clim., 6, 1743-1753, (1993)
[12] Dijkstra, H., A normal mode perspective of intrinsic ocean-climate variability, Annu. Rev. Fluid Mech., 48, 341-363, (2016) · Zbl 1356.76104
[13] Feliks, Y.; Ghil, M.; Robertson, A., The atmospheric circulation over the north atlantic as induced by the SST field, J. Clim., 24, 522-542, (2011)
[14] Hannachi, A.; Jolliffe, I.; Stephenson, D., Empirical orthogonal functions and related techniques in atmospheric science: a review, Intl J. Climatol., 27, 1119-1152, (2007)
[15] Hogg, A.; Killworth, P.; Blundell, J.; Dewar, W., Mechanisms of decadal variability of the wind-driven ocean circulation, J. Phys. Oceanogr., 35, 512-531, (2005)
[16] Karabasov, S. A.; Berloff, P. S.; Goloviznin, V. M., CABARET in the ocean gyres, Ocean Model., 2-3, 155-168, (2009)
[17] Kondrashov, D.; Berloff, P., Stochastic modeling of decadal variability in ocean gyres, Geophys. Res. Lett., 42, 1543-1553, (2015)
[18] Kravtsov, S.; Berloff, P.; Dewar, W.; Ghil, M.; Mcwilliams, J., Dynamical origin of low-frequency variability in a highly nonlinear midlatitude coupled model, J. Clim., 19, 6391-6408, (2010)
[19] Kushnir, Y., Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions, J. Clim., 7, 141-157, (1994)
[20] Kwon, Y.-O.; Alexander, M.; Bond, N.; Frankignoul, C.; Nakamura, H.; Qiu, B.; Thompson, L., Role of the Gulf stream and Kurosio-Oyashio systems in large-scale atmosphere-ocean interaction: a review, J. Clim., 23, 3249-3281, (2010)
[21] Mccalpin, J. D.; Haidvogel, D. B., Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model, J. Phys. Oceanogr., 26, 739-752, (1996)
[22] Mcwilliams, J. C., A note on a consistent quasigeostrophic model in a multiply connected domain, Dyn. Atmos. Oceans, 5, 427-441, (1977)
[23] Meacham, S. P., Low-frequency variability in the wind-driven circulation, J. Phys. Oceanogr., 30, 269-293, (2000)
[24] Nauw, J. J.; Dijkstra, H. A., The origin of low-frequency variability of double-gyre wind-driven flows, J. Mar. Res., 59, 567-597, (2001)
[25] Pedlosky, J., Geophysical Fluid Dynamics, (1987), Springer · Zbl 0713.76005
[26] Pierini, S.; Dijkstra, H.; Mu, M., Intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension, Adv. Oceanogr. Limnol., 5, 79-122, (2014)
[27] Preisendorfer, R. W., Principal Component Analysis in Meteorology and Oceanography, (1988), Elsevier
[28] Schmeits, M. J.; Dijkstra, H. A., Subannual variability of the ocean circulation in the Kuroshio region, J. Geophys. Res., 107, (2002)
[29] Sérazin, G.; Penduff, T.; Grégorio, S.; Barnier, B.; Molines, J.-M.; Terray, L., Intrinsic variability of sea level from global 1/12° ocean simulations: spatiotemporal scales, J. Clim., 28, 4279-4292, (2015)
[30] Sheremet, V. A.; Ierley, G. R.; Kamenkovich, V. M., Eigenanalysis of the two-dimensional wind-driven ocean circulation problem, J. Mar. Res., 55, 57-92, (1997)
[31] Shevchenko, I. V.; Berloff, P. S., Multi-layer quasi-geostrophic ocean dynamics in eddy-resolving regimes, Ocean Model., 94, 1-14, (2015)
[32] Simonnet, E., Quantization of the low-frequency variability of the double-gyre circulation, J. Phys. Oceanogr., 35, 2268-2290, (2010)
[33] Simonnet, E.; Dijkstra, H., Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 1747-1762, (2002)
[34] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, (2006), Cambridge University Press · Zbl 1374.86002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.