×

zbMATH — the first resource for mathematics

On the energetics of a two-layer baroclinic flow. (English) Zbl 1383.85007
MSC:
85A20 Planetary atmospheres
Software:
GCMs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arbic, B. K.; Flierl, G. R., Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom ekman friction: application to midocean eddies, J. Phys. Oceanogr., 34, 10, 2257-2273, (2004)
[2] Atkinson, D. H.; Pollack, J. B.; Seiff, A., The galileo probe doppler wind experiment: measurement of the deep zonal winds on jupiter, J. Geophys. Res., 103, E10, 22911-22928, (1998)
[3] Berloff, P.; Karabasov, S.; Farrar, J. T.; Kamenkovich, I., On latency of multiple zonal jets in the oceans, J. Fluid Mech., 686, 534-567, (2011) · Zbl 1241.76427
[4] Busse, F. H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 3, 441-460, (1970) · Zbl 0224.76041
[5] Busse, F. H., A simple model of convection in the jovian atmosphere, Icarus, 29, 255-260, (1976)
[6] Carton, X., Hydrodynamical modeling of oceanic vortices, Surv. Geophys., 22, 3, 179-263, (2001)
[7] Cho, J. Y.-K.; Polvani, L. M., The emergence of jets and vortices in freely-evolving shallow-water turbulence on a sphere, Phys. Fluids, 8, 1531-1552, (1996) · Zbl 1087.76057
[8] Dowling, T. E., Dynamics of jovian atmospheres, Annu. Rev. Fluid Mech., 27, 1, 293-334, (1995)
[9] Dowling, T. E.; Ingersoll, A. P., Potential vorticity and layer thickness variations in the flow around jupiter’s great red spot and white oval bc, J. Atmos. Sci., 45, 8, 1380-1396, (1988)
[10] Dowling, T. E.; Ingersoll, A. P., Jupiter’s great red spot as a shallow water system, J. Atmos. Sci., 46, 3256-3278, (1989)
[11] Dritschel, D. G.; Fontane, J., The combined Lagrangian advection method, J. Comput. Phys., 229, 5408-5417, (2010) · Zbl 1310.76124
[12] Dritschel, D. G.; Mcintyre, M. E., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 855-874, (2008)
[13] Dritschel, D. G.; Tobias, S. M., Two-dimensional magnetohydrodynamic turbulence in the small magnetic prandtl number limit, J. Fluid Mech., 703, 85-98, (2012) · Zbl 1248.76153
[14] Esler, J. G., The turbulent equilibration of an unstable baroclinic jet, J. Fluid Mech., 599, 241-268, (2008) · Zbl 1151.76617
[15] Feldstein, S. B.; Held, I. M., Barotropic decay of baroclinic waves in a two-layer beta-plane model, J. Atmos. Sci., 46, 22, 3416-3430, (1989)
[16] Fontane, J.; Dritschel, D. G., The hypercasl algorithm: a new approach to the numerical simulation of geophysical flows, J. Comput. Phys., 228, 17, 6411-6425, (2009) · Zbl 1261.86002
[17] Fu, L. L.; Flierl, G. R., Nonlinear energy and enstrophy transfers in a realistically stratified ocean, Dyn. Atmos. Oceans, 4, 4, 219-246, (1980)
[18] Ingersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sanchez-Lavega, A., Showman, A. P., Simon-Miller, A. A. & Vasavada, A. R.2004Dynamics of Jupiter’s Atmosphere. pp. 105-128. Cambridge University Press.
[19] James, I. N., Suppression of baroclinic instability in horizontally sheared flows, J. Atmos. Sci., 44, 24, 3710-3720, (1987)
[20] Kamenkovich, I.; Berloff, P.; Pedlosky, J., Role of eddy forcing in the dynamics of multiple zonal jets in a model of the north atlantic, J. Phys. Oceanogr., 39, 6, 1361-1379, (2009) · Zbl 1181.76071
[21] Kaspi, Y.; Flierl, G. R., Formation of jets by baroclinic instability on gas planet atmospheres, J. Atmos. Sci., 64, 9, 3177-3194, (2007)
[22] Kaspi, Y.; Flierl, G. R.; Showman, A. P., The deep wind structure of the giant planets: results from an anelastic general circulation model, Icarus, 202, 2, 525-542, (2009)
[23] Limaye, S. S., Jupiter: New estimates of the mean zonal flow at the cloud level, Icarus, 65, 2, 335-352, (1986)
[24] Liu, J.; Schneider, T., Mechanisms of jet formation on the giant planets, J. Atmos. Sci., 67, 11, 3652-3672, (2010)
[25] Marcus, P. S., Jupiter’s great red spot and other vortices, Annu. Rev. Astron. Astrophys., 31, 523-573, (1993)
[26] Maximenko, N. A.; Bang, B.; Sasaki, H., Observational evidence of alternating zonal jets in the world ocean, Geophys. Res. Lett., 32, L12607, (2005)
[27] Mohebalhojeh, A. R.; Dritschel, D. G., Contour-advective semi-lagrangian algorithms for many-layer primitive-equation models, Q. J. R. Meteorol. Soc., 130, 596, 347-364, (2004)
[28] Panetta, R. L.; Held, I. M., Baroclinic eddy fluxes in a one-dimensional model of quasi-geostrophic turbulence, J. Atmos. Sci., 45, 22, 3354-3365, (1988)
[29] Phillips, N., A simple three-dimensional model for the study of large-scale extra-tropical flow patterns, J. Meteorol., 8, 381-394, (1951)
[30] Porco, C. C.; West, R. A.; Mcewen, A.; Del Genio, A. D.; Ingersoll, A. P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C. D.; Johnson, T. V., Cassini imaging of jupiter’s atmosphere, satellites, and rings, Science, 299, 5612, 1541-1547, (2003)
[31] Rhines, P. B., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417-443, (1975) · Zbl 0366.76043
[32] Rogers, J. H., The Giant Planet Jupiter, (1995), Cambridge University Press
[33] Sachs, A., Babylonian observational astronomy, Phil. Trans. R. Soc. Lond. A, 276, 1257, 43-50, (1974)
[34] Scott, R. K., Non-robustness of the two-dimensional turbulent inverse cascade, Phys. Rev. E, 75, (2007)
[35] Scott, R. K.; Dritschel, D. G., The structure of zonal jets in geostrophic turbulence, J. Fluid Mech., 711, 576-598, (2012) · Zbl 1275.76132
[36] Showman, A. P., Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn, J. Atmos. Sci., 64, 9, 3132-3157, (2007)
[37] Simon, A. A.; Wong, M. H.; Orton, G. S., First results from the hubble opal program: Jupiter in 2015, Astrophys. J., 812, 1, 55, (2015)
[38] Smith, K.; Vallis, G. K., The scales and equilibration of midocean eddies, J. Phys. Oceanogr., 32, 6, 1699-1720, (2002)
[39] Spiga, A., Guerlet, S., Meurdesoif, Y., Indurain, M., Millour, E., Dubos, T., Sylvestre, M., Leconte, J. & Fouchet, T.2015Waves and eddies simulated by high-resolution global climate modeling of saturn’s troposphere and stratosphere. In EPSC 2015, vol. 10, p. 881.
[40] Thompson, A. F.; Young, W. R., Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance, J. Atmos. Sci., 64, 3214-3231, (2007)
[41] Thomson, S. I.; Mcintyre, M. E., Jupiter’s unearthly jets: a new turbulent model exhibiting statistical steadiness without large-scale dissipation, J. Atmos. Sci., 73, 3, 1119-1141, (2016)
[42] Thorncroft, C. D.; Hoskins, B. J.; Mcintyre, M. E., Two paradigms of baroclinic-wave life-cycle behaviour, Q. J. R. Meteorol. Soc., 119, 17-55, (1993)
[43] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics, (2006), Cambridge University Press
[44] Venaille, A.; Nadeau, L. P.; Vallis, G. K., Ribbon turbulence, Phys. Fluids, 26, 12, (2014)
[45] Williams, G. P., Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence, J. Atmos. Sci., 35, 1399-1424, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.