zbMATH — the first resource for mathematics

Transport and instability in driven two-dimensional magnetohydrodynamic flows. (English) Zbl 1445.76095
Summary: This paper concerns the generation of large-scale flows in forced two-dimensional systems. A Kolmogorov flow with a sinusoidal profile in one direction (driven by a body force) is known to become unstable to a large-scale flow in the perpendicular direction at a critical Reynolds number. This can occur in the presence of a \(\beta\)-effect and has important implications for flows observed in geophysical and astrophysical systems. It has recently been termed ‘zonostrophic instability’ and studied in a variety of settings, both numerically and analytically. The goal of the present paper is to determine the effect of magnetic field on such instabilities using the quasi-linear approximation, in which the full fluid system is decoupled into a mean flow and waves of one scale. The waves are driven externally by a given random body force and move on a fast time scale, while their stress on the mean flow causes this to evolve on a slow time scale. Spatial scale separation between waves and mean flow is also assumed, to allow analytical progress. The paper first discusses purely hydrodynamic transport of vorticity including zonostrophic instability, the effect of uniform background shear and calculation of equilibrium profiles in which the effective viscosity varies spatially, through the mean flow. After brief consideration of passive scalar transport or equivalently kinematic magnetic field evolution, the paper then proceeds to study the full magnetohydrodynamic system and to determine effective diffusivities and other transport coefficients using a mixture of analytical and numerical methods. This leads to results on the effect of magnetic field, background shear and \(\beta\)-effect on zonostrophic instability and magnetically driven instabilities.
76W05 Magnetohydrodynamics and electrohydrodynamics
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
Full Text: DOI
[1] Aubert, J., Steady zonal flows in spherical shell dynamos, J. Fluid Mech., 542, 53-67, (2005) · Zbl 1080.76072
[2] Bajer, K.; Bassom, A. P.; Gilbert, A. D., Accelerated diffusion in the centre of a vortex, J. Fluid Mech., 437, 395-411, (2001) · Zbl 0981.76023
[3] Bakas, N. A.; Iouannou, P. J., Structural stability theory of two-dimensional fluid flow under stochastic forcing, J. Fluid Mech., 682, 332-361, (2011) · Zbl 1241.76221
[4] Bakas, N. A.; Iouannou, P. J., On the mechanism underlying the spontaneous emergence of barotropic zonal jets, J. Atmos. Sci., 70, 2251-2271, (2013)
[5] Bakas, N. A.; Iouannou, P. J., A theory for the emergence of coherent structures in beta-plane turbulence, J. Fluid Mech., 740, 312-341, (2014)
[6] Bedrossian, J. & Masmoudi, N.2015Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. In Publications Mathématiques de l’IHÉS, pp. 1-106. Springer. · Zbl 1375.35340
[7] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A mechanism of multiple zonal jets in the oceans, J. Fluid Mech., 628, 395-425, (2009) · Zbl 1181.76071
[8] Bernoff, A. J.; Lingevitch, J. F., Rapid relaxation of an axisymmetric vortex, Phys. Fluids, 6, 3717-3723, (1994) · Zbl 0838.76024
[9] Bouchet, F.; Morita, H., Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations, Physica D, 239, 948-966, (2010) · Zbl 1189.35234
[10] Bouchet, F.; Nardini, C.; Tangarife, T., Kinetic theory of jet dynamics in the stochastic barotropic and 2d Navier-Stokes equations, J. Stat. Phys., 153, 572-625, (2013) · Zbl 1292.82031
[11] Bouchet, F.; Nardini, C.; Tangarife, T., Stochastic averaging, large deviations and random transitions for the dynamics of 2D and geostrophic turbulent vortices, Fluid. Dyn. Res., 46, (2014)
[12] Chechkin, A. V., Negative magnetic viscosity in two dimensions, J. Expl Theor. Phys., 89, 677-688, (1999)
[13] Constantinou, N. C.; Farrell, B. F.; Iouannou, P. J., Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory, J. Atmos. Sci., 71, 1818-1842, (2014)
[14] Diamond, P. H., Itoh, S.-I., Itoh, K. & Silvers, L. J.2007Beta-plane MHD turbulence and dissipation in the solar tachocline. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), pp. 213-239. Cambridge University Press. doi:10.1017/CBO9780511536243.010
[15] Dritschel, D. G.; Mcintyre, M. E., Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers, J. Atmos. Sci., 65, 855-874, (2008)
[16] Dritschel, D. G.; Scott, R. K., Jet sharpening by turbulent mixing, Proc. R. Soc. Lond. A, 369, 754-770, (2011) · Zbl 1219.85007
[17] Dunkerton, T. J.; Scott, R. K., A barotropic model of the angular momentum conserving potential vorticity staircase in spherical geometry, J. Atmos. Sci., 65, 1105-1135, (2008)
[18] Durston, S.2015 Zonal jets and shear: transport properties of two-dimensional fluid flows. PhD thesis, University of Exeter, UK.
[19] Farrell, B. F.; Iouannou, P. J., Structural stability of turbulent jets, J. Atmos. Sci., 60, 2101-2118, (2003)
[20] Farrell, B. F.; Iouannou, P. J., Structure and spacing of jets in barotropic turbulence, J. Atmos. Sci., 64, 3652-3665, (2006)
[21] Farrell, B. F.; Iouannou, P. J., Formation of jets by baroclinic turbulence, J. Atmos. Sci., 65, 3353-3375, (2008)
[22] Frisch, U.; Legras, B.; Villone, B., Large-scale Kolmogorov flow on the beta-plane and resonant wave interactions, Physica D, 94, 36-56, (1996) · Zbl 0899.76230
[23] Galperin, B.; Sukoriansky, S.; Dikovskaya, N.; Read, P. L.; Yamazaki, Y. H.; Wordsworth, R., Anisotropic turbulence and zonal jets in rotating flows with a 𝛽 effect, Nonlinear Process. Geophys., 13, 83-98, (2006)
[24] Galperin, B.; Young, R. M. B.; Sukoriansky, S.; Dikovskaya, N.; Read, P. L.; Lancaster, A. J.; Armstrong, D., Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter, Icarus, 229, 295-320, (2014)
[25] Heimpel, M. A.; Aurnou, J.; Wicht, J., Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model, Nature, 438, 193-196, (2005)
[26] Hsu, P.-C.; Diamond, P. H., Zonal flow formation in the presence of ambient mean shear, Phys. Plasmas, 22, (2015)
[27] Hughes, D. W.; Rosner, R.; Weiss, N. O., The Solar Tachocline, (2007), Cambridge University Press
[28] Keating, S. R.; Diamond, P. H., Turbulent resistivity in wavy two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 595, 173-202, (2008) · Zbl 1159.76392
[29] Kim, E.-J., The role of magnetic shear in flow shear suppression, Phys. Plasmas, 18, (2007)
[30] Kim, E.-J.; Macgregor, K. B., Gravity wave driven flows in the solar tachocline. II: stationary flows, Astrophys. J., 588, 645-654, (2003)
[31] Leprovost, N.; Kim, E.-J., Analytical theory of forced rotating sheared turbulence: the perpendicular case, Phys. Rev. E, 78, (2008)
[32] Leprovost, N.; Kim, E.-J., Analytical theory of forced rotating sheared turbulence: the parallel case, Phys. Rev. E, 78, (2008)
[33] Leprovost, N.; Kim, E.-J., Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field, Phys. Rev. E, 80, (2009)
[34] Manfroi, A. J.; Young, W. R., Slow evolution of zonal jets on the beta plane, J. Atmos. Sci., 56, 784-800, (1998)
[35] Manfroi, A. J.; Young, W. R., Stability of 𝛽-plane Kolmogorov flow, Physica D, 162, 208-232, (2002) · Zbl 0983.86002
[36] Meshalkin, L. D.; Sinai, I. G., Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid, Appl. Math. Mech., 25, 1700-1705, (1961) · Zbl 0108.39501
[37] Morin, V.; Dormy, E., Time dependent 𝛽-convection in rapidly rotating spherical shells, Phys. Fluids, 16, 1603-1609, (2004) · Zbl 1186.76386
[38] Newton, A.; Kim, E.-J.; Liu, H.-L., On the self-organizing process of large scale shear flows, Phys. Plasmas, 20, (2013)
[39] Olver, F. J. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, (2010), Cambridge University Press · Zbl 1198.00002
[40] Parker, J. B.; Krommes, J. A., Zonal flow as pattern formation, Phys. Plasmas, 20, (2013)
[41] Parker, J. B.; Krommes, J. A., Generation of zonal flows through symmetry breaking of statistical homogeneity, New J. Phys., 16, (2014)
[42] Read, P. L.; Jacoby, T. N. L.; Rogberg, P. H. T.; Wordsworth, R. D.; Yamazaki, Y. H.; Miki-Yamazaki, K.; Young, R. M. B.; Sommeria, J.; Didelle, H.; Viboud, S., An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane, Phys. Fluids, 27, (2015)
[43] Read, P. L.; Yamazaki, Y. H.; Lewis, S. R.; Williams, P. D.; Wordsworth, R.; Miki-Yamazaki, K.; Sommeria, J.; Didelle, H.; Fincham, A. M., Dynamics of convectively driven banded jets in the laboratory, J. Atmos. Sci., 64, 4031-4052, (2007)
[44] Rhines, P. B., Waves and turbulence on the beta-plane, J. Fluid Mech., 69, 417-441, (1975) · Zbl 0366.76043
[45] Rotvig, J.; Jones, C. A., Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries, J. Fluid Mech., 567, 117-140, (2006) · Zbl 1177.76452
[46] Scott, R. K.; Dritschel, D. G., The structure of zonal jets in geostrophic turbulence, J. Fluid Mech., 711, 576-598, (2012) · Zbl 1275.76132
[47] Scott, R. K.; Polvani, L. M., Forced-dissipative shalllow-water turbulence on the sphere and the atmospheric circulation of the giant planets, J. Atmos. Sci., 64, 3158-3176, (2007)
[48] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atmos. Sci., 69, 1633-1656, (2012)
[49] Srinivasan, K.; Young, W. R., Reynolds stress and eddy diffusivity of 𝛽-plane shear flows, J. Atmos. Sci., 71, 2169-2185, (2014)
[50] Sukoriansky, S.; Galperin, B.; Chekhlov, A., Large scale drag representation in simulations of two-dimensional turbulence, Phys. Fluids, 11, 3043-3053, (1999) · Zbl 1149.76554
[51] Tobias, S. M.; Dagon, K.; Marston, J. B., Astrophysical fluid dynamics via direct statistical simulation, Astrophys. J., 727, 127, (2011)
[52] Tobias, S. M.; Hughes, D. W.; Diamond, P. H., 𝛽-plane magnetohydrodynamic turbulence in the solar tachocline, Astrophys. J., 667, L113-116, (2007)
[53] Vallis, G. K.; Maltrud, M. E., Generation of mean flow and jets on a beta plane and over topography, J. Phys. Oceanogr., 23, 1346-1362, (1993)
[54] Weiss, N. O., The expulsion of magnetic flux by eddies, Proc. R. Soc. Lond. A, 293, 310-328, (1966)
[55] Yadav, R. K.; Gastine, T.; Christensen, U. R.; Reiners, A., Formation of starspots in self-consistent global dynamo models: polar spots on cool stars, Astron. Astrophys., 573, A68, (2015)
[56] Zhang, K.; Jones, C. A., The effect of hyperviscosity on geodynamo models, Geophys. Res. Lett., 24, 2869-2872, (1997)
[57] Zheligovksy, V., Large-Scale Perturbations of Magnetohydrodynamic Regimes: Linear and Weakly Nonlinear Stability Theory, (2011), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.