×

zbMATH — the first resource for mathematics

Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence. (English) Zbl 1415.76380
Summary: Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar vertical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence facilitates application of an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second-order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave-mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results constitute a theory for VSHF formation applicable to interpreting simulations and observations of geophysical examples of turbulent jets such as the ocean’s equatorial deep jets.

MSC:
76F45 Stratification effects in turbulence
86A05 Hydrology, hydrography, oceanography
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ascani, F.; Firing, E.; Mccreary, J. P.; Brandt, P.; Greatbatch, R. J., The deep equatorial ocean circulation in wind-forced numerical solutions, J. Phys. Oceanogr., 45, 1709-1734, (2015)
[2] Bakas, N. A.; Constantinou, N. C.; Ioannou, P. J., Statistical state dynamics of weak jets in barotropic beta-plane turbulence, J. Atmos. Sci., (2018)
[3] Bakas, N. A.; Ioannou, P. J., Structural stability theory of two-dimensional fluid flow under stochastic forcing, J. Fluid Mech., 682, 332-361, (2011) · Zbl 1241.76221
[4] Bakas, N. A.; Ioannou, P. J., On the mechanism underlying the spontaneous emergence of barotropic zonal jets, J. Atmos. Sci., 70, 2251-2271, (2013)
[5] Bakas, N. A.; Ioannou, P. J.; Kefaliakos, G. E., The emergence of coherent structures in stratified shear flow, J. Atmos. Sci., 58, 18, 2790-2806, (2001)
[6] Berloff, P.; Kamenkovich, I.; Pedlosky, J., A mechanism of formation of multiple zonal jets in the oceans, J. Fluid Mech., 628, 395-425, (2009) · Zbl 1181.76071
[7] Brandt, P.; Funk, A.; Hormann, V.; Dengler, M.; Greatbatch, R. J.; Toole, J. M., Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean, Nature, 473, 497-500, (2011)
[8] Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J. M., Scaling analysis and simulation of strongly stratified turbulent flows, J. Fluid Mech., 585, 343-368, (2007) · Zbl 1168.76327
[9] Constantinou, N.
[10] Constantinou, N. C.; Farrell, B. F.; Ioannou, P. J., Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory, J. Atmos. Sci., 71, 1818-1842, (2014)
[11] Constantinou, N. C.; Parker, J. B., Magnetic suppression of zonal flows on a beta plane, Astrophys. J., 863, 1, 46, (2018)
[12] Davis, P. J., Circulant Matrices, (1978), Wiley-Interscience
[13] Eden, C.; Dengler, M., Stacked jets in the deep equatorial Atlantic Ocean, J. Geophys. Res., 113, (2008)
[14] Farrell, B. F.; Gayme, D. F.; Ioannou, P. J., A statistical state dynamics approach to wall turbulence, Phil. Trans. R. Soc. Lond. A, 375, (2017)
[15] Farrell, B. F.; Ioannou, P. J., Stochastic dynamics of baroclinic waves, J. Atmos. Sci., 50, 4044-4057, (1993)
[16] Farrell, B. F.; Ioannou, P. J., Transient development of perturbations in stratified shear flow, J. Atmos. Sci., 50, 2201-2214, (1993)
[17] Farrell, B. F.; Ioannou, P. J., Generalized stability theory. Part I. Autonomous operators, J. Atmos. Sci., 53, 2025-2040, (1996)
[18] Farrell, B. F.; Ioannou, P. J., Perturbation growth and structure in uncertain flows. Part II, J. Atmos. Sci., 59, 2647-2664, (2002)
[19] Farrell, B. F.; Ioannou, P. J., Structural stability of turbulent jets, J. Atmos. Sci., 60, 2101-2118, (2003)
[20] Farrell, B. F.; Ioannou, P. J., Structure and spacing of jets in barotropic turbulence, J. Atmos. Sci., 64, 3652-3665, (2007) · Zbl 1127.90042
[21] Farrell, B. F.; Ioannou, P. J., Formation of jets by baroclinic turbulence, J. Atmos. Sci., 65, 3353-3375, (2008)
[22] Farrell, B. F.; Ioannou, P. J., A stochastic structural stability theory model of the drift wave-zonal flow system, Phys. Plasmas, 16, (2009)
[23] Farrell, B. F.; Ioannou, P. J., A theory of baroclinic turbulence, J. Atmos. Sci., 66, 2444-2454, (2009)
[24] Farrell, B. F.; Ioannou, P. J., Emergence of jets from turbulence in the shallow-water equations on an equatorial beta plane, J. Atmos. Sci., 66, 3197-3207, (2009)
[25] Farrell, B. F.; Ioannou, P. J., Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow, J. Fluid Mech., 708, 149-196, (2012) · Zbl 1275.76125
[26] Farrell, B. F.; Ioannou, P. J.; Galperin, B.; Read, P. L., Statistical state dynamics: a new perspective on turbulence in shear flow, Zonal Jets: Phenomenology, Genesis, Physics, (2017), Cambridge University Press
[27] Farrell, B. F.; Ioannou, P. J., Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow, Phys. Rev. Fluids, 2, 8, (2017)
[28] Farrell, B. F.; Ioannou, P. J., Statistical state dynamics based theory for the formation and equilibration of Saturn’s north polar jet, Phys. Rev. Fluids, 2, 7, (2017)
[29] Farrell, B. F.; Ioannou, P. J.; Nikolaidis, M.-A., Instability of the roll-streak structure induced by background turbulence in pretransitional Couette flow, Phys. Rev. Fluids, 2, 3, (2017)
[30] Fitzgerald, J. G.; Farrell, B. F., Mechanisms of mean flow formation and suppression in two-dimensional Rayleigh-Bénard convection, Phys. Fluids, 26, (2014)
[31] Fitzgerald, J. G.; Farrell, B. F., Vertically sheared horizontal flow-forming instability in stratified turbulence: linear stability analysis using the analytical approach to statistical state dynamics, J. Atmos. Sci., (2018)
[32] Fjørtoft, R., On the changes in the spectral distribution of kinetic energy for two-dimensional, non-divergent flow, Tellus, 5A, 225-230, (1953)
[33] Galmiche, M.; Hunt, J. C. R., The formation of shear and density layers in stably stratified turbulent flows: linear processes, J. Fluid Mech., 455, 243-262, (2002) · Zbl 1147.76581
[34] Galmiche, M.; Thual, O.; Bonneton, P., Direct numerical simulation of turbulence-mean field interactions in a stably stratified fluid, J. Fluid Mech., 455, 213-242, (2002) · Zbl 1063.76048
[35] Galperin, B.; Sukoriansky, S.; Anderson, P. S., On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 3, 65-69, (2007)
[36] Galperin, B.; Sukoriansky, S.; Dikovskaya, N., Geophysical flows with anisotropic turbulence and dispersive waves: flows with a beta-effect, Ocean Dyn., 60, 2, 427-441, (2010)
[37] Galperin, B.; Young, R. M. B.; Sukoriansky, S.; Dikovskaya, N., Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter, Icarus, 229, 295-320, (2014)
[38] Herbert, C.; Marino, R.; Rosenberg, D.; Pouquet, A., Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation, J. Fluid Mech., 806, 165-204, (2016) · Zbl 1383.76260
[39] Herring, J. R.; Métais, O., Numerical experiments in forced stably stratified turbulence, J. Fluid Mech., 202, 97-115, (1989)
[40] Holloway, G., Eddies, waves, circulation, and mixing: statistical geofluid mechanics, Annu. Rev. Fluid Mech., 18, 91-147, (1986) · Zbl 0609.76041
[41] Hua, B. L.; D’Orgeville, M.; Fruman, M. D., Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets, J. Fluid Mech., 610, 311-341, (2008) · Zbl 1181.76041
[42] Huang, H.-P.; Galperin, B.; Sukoriansky, S., Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere, Phys. Fluids, 13, 1, 225-240, (2001) · Zbl 1184.76235
[43] Kaminski, A. K.; Caulfield, C. P.; Taylor, J. R., Transient growth in strongly stratified shear layers, J. Fluid Mech., 758, (2014)
[44] Kraichnan, R. H., Relation of fourth-order to second-order moments in stationary isotropic turbulence, Phys. Rev., 107, 6, 1485-1490, (1957) · Zbl 0078.17801
[45] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 7, 1417-1423, (1967)
[46] Kumar, A.; Verma, M. K.; Sukhatme, J., Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing, J. Turbul., 18, 3, 219-239, (2017)
[47] Laval, J. P.; Mcwilliams, J.; Dubrulle, B., Forced stratified turbulence: successive transitions with Reynolds number, Phys. Rev. E, 68, 3, (2003) · Zbl 1186.76310
[48] Lindborg, E., The energy cascade in a strongly stratified fluid, J. Fluid Mech., 550, 207-242, (2006) · Zbl 1097.76039
[49] Majda, A. J.; Timofeyev, I.; Vanden Eijnden, E., Models for stochastic climate prediction, Proc. Natl Acad. Sci. USA, 96, 14687-14691, (1999) · Zbl 0966.86003
[50] Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A., Large-scale anisotropy in stably stratified rotating flows, Phys. Rev. E, 90, 2, (2014)
[51] Marston, J. B., Statistics of the general circulation from cumulant expansions, Chaos, 20, (2010)
[52] Marston, J. B., Planetary atmospheres as nonequilibrium condensed matter, Annu. Rev. Condens. Matter Phys., 3, 285-310, (2012)
[53] Marston, J. B.; Conover, E.; Schneider, T., Statistics of an unstable barotropic jet from a cumulant expansion, J. Atmos. Sci., 65, 1955-1966, (2008)
[54] Mccreary, J. P., Equatorial beams, J. Mar. Res., 42, 395-430, (1984)
[55] Ménesguen, C.; Hua, B. L.; Fruman, M. D.; Schopp, R., Intermittent layering in the Atlantic equatorial deep jets, J. Mar. Res., 67, 347-360, (2009)
[56] Muench, J. E.; Kunze, E., Internal wave interactions with equatorial deep jets. Part I. Momentum-flux divergences, J. Phys. Oceanogr., 29, 1453-1467, (1999)
[57] Ogura, Y., A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech., 16, 1, 33-40, (1963) · Zbl 0117.20704
[58] Parker, J. B.; Krommes, J. A., Zonal flow as pattern formation, Phys. Plasmas, 20, (2013)
[59] Parker, J. B.; Krommes, J. A., Generation of zonal flows through symmetry breaking of statistical homogeneity, New J. Phys., 16, (2014)
[60] Remmel, M.; Sukhatme, J.; Smith, L. M., Nonlinear gravity-wave interactions in stratified turbulence, Theor. Comput. Fluid Dyn., 28, 131-145, (2013)
[61] Riley, J. J.; Lelong, M.-P., Fluid motions in the presence of strong stable stratification, Annu. Rev. Fluid Mech., 32, 613-657, (2000) · Zbl 0988.76019
[62] Rorai, C.; Mininni, P. D.; Pouquet, A., Stably stratified turbulence in the presence of large-scale forcing, Phys. Rev. E, 92, 1, (2015)
[63] Salmon, R.; Osborne, A. R.; Rizzoli, P. M., Geostrophic turbulence, Topics in Ocean Physics, (1982), Italian Physical Society
[64] Smith, L. M.; Milewski, P. A.; Smith, L. M.; Waleffe, F.; Tabak, E. G., Numerical study of two-dimensional stratified turbulence, Advances in Wave Interaction and Turbulence, (2001), American Mathematical Society
[65] Smith, L. M.; Waleffe, F., Generation of slow large scales in forced rotating stratified turbulence, J. Fluid Mech., 451, 145-168, (2002) · Zbl 1009.76040
[66] Squire, J.; Bhattacharjee, A., Statistical simulation of the magnetorotational dynamo, Phys. Rev. Lett., 114, 8, (2015)
[67] Srinivasan, K.; Young, W. R., Zonostrophic instability, J. Atmos. Sci., 69, 1633-1656, (2012)
[68] St-Onge, D. A.; Krommes, J. A., Zonostrophic instability driven by discrete particle noise, Phys. Plasmas, 24, (2017)
[69] Sukoriansky, S.; Dikovskaya, N.; Galperin, B., Transport of momentum and scalar in turbulent flows with anisotropic dispersive waves, Geophys. Res. Lett., 36, (2009)
[70] Sukoriansky, S.; Galperin, B., QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation, J. Fluid Mech., 805, 384-421, (2016)
[71] Taylor, J. R.
[72] Thomas, V. L.; Farrell, B. F.; Ioannou, P. J.; Gayme, D. F., A minimal model of self-sustaining turbulence, Phys. Fluids, 27, (2015)
[73] Thomas, V. L.; Lieu, B. K.; Jovanovic, M. R.; Farrell, B. F.; Ioannou, P. J.; Gayme, D. F., Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow, Phys. Fluids, 26, (2014)
[74] Tobias, S. M.; Dagon, K.; Marston, J. B., Astrophysical fluid dynamics via direct statistical simulation, Astrophys. J., 727, 127, (2011)
[75] Tobias, S. M.; Marston, J. B., Direct statistical simulation of out-of-equilibrium jets, Phys. Rev. Lett., 110, (2013)
[76] Vasavada, A. R.; Showman, A. P., Jovian atmospheric dynamics: an update after Galileo and Cassini, Rep. Prog. Phys., 68, 1935-1996, (2005)
[77] Waite, M. L.; Bartello, P., Stratified turbulence dominated by vortical motion, J. Fluid Mech., 517, 281-308, (2004) · Zbl 1063.76044
[78] Waite, M. L.; Bartello, P., Stratified turbulence generated by internal gravity waves, J. Fluid Mech., 546, 313-339, (2006) · Zbl 1222.76058
[79] Wunsch, C., Response of an equatorial ocean to a periodic monsoon, J. Phys. Oceanogr., 7, 497-511, (1977)
[80] Youngs, M.; Johnson, G., Basin-wavelength equatorial deep jet signals across three oceans, J. Phys. Oceanogr., 45, 2134-2148, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.