zbMATH — the first resource for mathematics

Linear stability analysis for flows over sinusoidal bottom topography. (English) Zbl 07309323
Summary: This is an ocean motivated study which investigates the impacts of sinusoidal bottom topography on baroclinic instability of zonal vertically sheared flows in the two-layer quasigeostrophic model. The corresponding linear stability problem is solved by assuming Fourier-mode solutions in both the zonal and meridional directions. In the presence of variable topographic features, the Fourier modes become coupled due to phase shifts in the wavevectors. The spectral discretisation method used in this work retains the primary relationship between different Fourier modes; thus, the linear stability eigenproblem can be solved for any periodic topography. Moreover, this method does not need any additional assumptions, such as considering small-amplitude or large-scale bottom irregularities, as in some previous studies. In this work, the eigenproblem is solved for a range of topographic amplitudes and wavenumbers, and their effects on the growth rates and shapes of the most unstable eigenmodes are discussed. In general, both the zonal and meridional variations in topography tend to suppress the baroclinic instability. However, it is found that only meridionally varying topography affects the magnitudes of the fastest growth rates. In this instance, unstable modes appear to form two clusters well separated in the zonal wavenumber axis and growth rate maxima occur at two distinct zonal wavenumbers. Dependencies of the characteristics of these clusters on the values of topography amplitude and ridge width are reviewed. Finally, doubly periodic numerical simulations are used to verify the results from the linear stability analysis.
76 Fluid mechanics
Full Text: DOI
[1] Abernathey, R. & Cessi, P.2014Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr.44 (8), 2107-2126.
[2] Barthel, A., Mcc. Hogg, A., Waterman, S. & Keating, S.2017Jet-topography interactions affect energy pathways to the deep southern ocean. J. Phys. Oceanogr.47 (7), 1799-1816.
[3] Benilov, E.S.2000aThe stability of zonal jets in a rough-bottomed ocean on the barotropic beta plane. J. Phys. Oceanogr.30 (4), 733-740.
[4] Benilov, E.S.2000bWaves on the beta-plane over sparse topography. J. Fluid Mech.423, 263-273. · Zbl 0998.76092
[5] Benilov, E.S.2001Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr.31 (8), 2019-2025.
[6] Benilov, E.S., Nycander, J. & Dritschel, D.G.2004Destabilization of barotropic flows small-scale topography. J. Fluid Mech.517, 359-374. · Zbl 1131.76322
[7] Berloff, P. & Kamenkovich, I.2013On spectral analysis of mesoscale eddies. Part 1. Linear analysis. J. Phys. Oceanogr.43 (12), 2505-2527.
[8] Berloff, P., Kamenkovich, I. & Pedlosky, J.2009A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech.628, 395-425. · Zbl 1181.76071
[9] Berloff, P., Karabasov, S., Farrar, J.T. & Kamenkovich, I.2011On latency of multiple zonal jets in the oceans. J. Fluid Mech.686, 534-567. · Zbl 1241.76427
[10] Boland, E., Thompson, A.F., Shuckburgh, E. & Haynes, P.2012The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr.42 (10), 1635-1651.
[11] Chapman, C.C., Mcc. Hogg, A., Kiss, A.E. & Rintoul, S.R.2015The dynamics of southern ocean storm tracks. J. Phys. Oceanogr.45 (3), 884-903.
[12] Chelton, D.B., Deszoeke, R.A., Schlax, M.G., El Naggar, K. & Siwertz, N.1998Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr.28 (3), 433-460.
[13] Chen, C. & Kamenkovich, I.2013Effects of topography on baroclinic instability. J. Phys. Oceanogr.43 (4), 790-804.
[14] Chen, C., Kamenkovich, I. & Berloff, P.2015On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr.45 (3), 927-940.
[15] Gille, S.T., Metzger, E.J. & Tokmakian, R.2004Seafloor topography and ocean circulation. Oceanography17 (1), 47-54.
[16] Hart, J.E.1975aBaroclinic instability over a slope. Part 1. Linear theory. J. Phys. Oceanogr.5 (4), 625-633.
[17] Hart, J.E.1975bBaroclinic instability over a slope. Part 2. Finite-amplitude theory. J. Phys. Oceanogr.5 (4), 634-641.
[18] Khatri, H. & Berloff, P.2018A mechanism for jet drift over topography. J. Fluid Mech.845, 392-416. · Zbl 1404.86019
[19] Khatri, H. & Berloff, P.2019Tilted drifting jets over a zonally sloped topography: effects of vanishing eddy viscosity. J. Fluid Mech.876, 939-961. · Zbl 1430.86003
[20] Killworth, P.D.1980Barotropic and baroclinic instability in rotating stratified fluids. Dyn. Atmos. Oceans4 (3), 143-184.
[21] Klocker, A.2018Opening the window to the southern ocean: the role of jet dynamics. Sci. Adv.4 (10), eaao4719.
[22] Lacasce, J.H., Escartin, J., Chassignet, E.P. & Xu, X.2019Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr.49 (2), 585-605.
[23] Lazar, A., Zhang, Q. & Thompson, A.F.2018Submesoscale turbulence over a topographic slope. Fluids3 (2), 32.
[24] Lorenz, E.N.1972Barotropic instability of Rossby wave motion. J. Atmos. Sci.29 (2), 258-265.
[25] Marshall, D.1995Influence of topography on the large-scale ocean circulation. J. Phys. Oceanogr.25 (7), 1622-1635.
[26] Niino, H. & Misawa, N.1984An experimental and theoretical study of barotropic instability. J. Atmos. Sci.41 (12), 1992-2011.
[27] Orlanski, I. & Cox, M.D.1972Baroclinic instability in ocean currents. Geophys. Astrophys. Fluid Dyn.4 (1), 297-332.
[28] Patmore, R.D., Holland, P.R., Munday, D.R., Naveira Garabato, A.C., Stevens, D.P. & Meredith, M.P.2019Topographic control of southern ocean gyres and the Antarctic circumpolar current: a barotropic perspective. J. Phys. Oceanogr.49 (12), 3221-3244.
[29] Pedlosky, J.1964The stability of currents in the atmosphere and the ocean: Part I. J. Atmosp. Sci.21 (2), 201-219.
[30] Radko, T.2020Control of baroclinic instability by submesoscale topography. J. Fluid Mech.882. · Zbl 1430.76193
[31] Rhines, P.B.1977 The dynamics of unsteady currents. In The Sea (ed. E.D. Goldberg, I.N. McCave, J.J. O’Brien & J.H. Steele), vol. 6, pp. 189-318. Wiley-Interscience.
[32] Shevchenko, I.V., Berloff, P.S., Guerrero-López, D. & Roman, J.E.2016On low-frequency variability of the midlatitude ocean gyres. J. Fluid Mech.795, 423-442. · Zbl 1359.86014
[33] Smith, K.S.2007Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: shear dispersion of potential vorticity. J. Phys. Oceanogr.37 (4), 1037-1050.
[34] Stern, A., Nadeau, L.-P. & Holland, D.2015Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr.45 (9), 2315-2338.
[35] Sutyrin, G.2007 Ageostrophic instabilities in a baroclinic flow over sloping topography. In Congrès français de mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc-92400 Courbevoie. · Zbl 1141.76392
[36] Tamsitt, V., et al.. 2017Spiraling pathways of global deep waters to the surface of the southern ocean. Nat. Commun.8 (1), 1-10.
[37] Tang, C.-M.1975Baroclinic instability of stratified shear flows in the ocean and atmosphere. J. Geophys. Res.80 (9), 1168-1175.
[38] Thompson, A.F.2010Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr.40 (2), 257-278.
[39] Thompson, A.F. & Naveira Garabato, A.C.2014Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr.44 (7), 1811-1828.
[40] Thompson, A.F. & Richards, K.J.2011Low frequency variability of southern ocean jets. J. Geophys. Res.116, C9.
[41] Thompson, A.F. & Sallée, J. -B.2012Jets and topography: jet transitions and the impact on transport in the Antarctic circumpolar current. J. Phys. Oceanogr.42 (6), 956-972.
[42] Vallis, G.K.2017Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press. · Zbl 1374.86002
[43] Vanneste, J.2003Nonlinear dynamics over rough topography: homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech.474, 299-318. · Zbl 1129.76374
[44] Waterman, S. & Hoskins, B.J.2013Eddy shape, orientation, propagation, and mean flow feedback in western boundary current jets. J. Phys. Oceanogr.43 (8), 1666-1690.
[45] Williams, P.D., Read, P.L. & Haine, T.W.N.2010Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime. J. Fluid. Mech.649, 187-203. · Zbl 1189.76724
[46] Youngs, M.K., Thompson, A.F., Lazar, A. & Richards, K.J.2017Acc meanders, energy transfer, and mixed barotropic-baroclinic instability. J. Phys. Oceanogr.47 (6), 1291-1305.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.