×

zbMATH — the first resource for mathematics

Structural stability theory of two-dimensional fluid flow under stochastic forcing. (English) Zbl 1241.76221
Summary: Large-scale mean flows often emerge in turbulent fluids. In this work, we formulate a stability theory, the stochastic structural stability theory (SSST), for the emergence of jets under external random excitation. We analytically investigate the structural stability of a two-dimensional homogeneous fluid enclosed in a channel and subjected to homogeneous random forcing. We show that two generic competing mechanisms control the instability that gives rise to the emergence of an infinitesimal jet: advection of the eddy vorticity by the mean flow that is shown to be jet forming and advection of the vorticity gradient of the jet by the eddies that is shown to hinder the formation of the mean flow. We show that stochastic forcing with small streamwise coherence and an amplitude larger than a certain threshold leads to the emergence of jets in the channel through a bifurcation of the non-linear SSST system.

MSC:
76E20 Stability and instability of geophysical and astrophysical flows
76M35 Stochastic analysis applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112009992151 · Zbl 1189.76191 · doi:10.1017/S0022112009992151
[2] DOI: 10.1017/S0022112090002075 · Zbl 0692.76054 · doi:10.1017/S0022112090002075
[3] Davis, Circulant Matrices (1978)
[4] Zhang, J. Meteorol. Soc. Japan 56 pp 3416– (1999)
[5] DOI: 10.1175/1520-0469(1998)055&lt;0611:TDTAPZ&gt;2.0.CO;2 · doi:10.1175/1520-0469(1998)055<0611:TDTAPZ>2.0.CO;2
[6] DOI: 10.1017/S0022112010000510 · Zbl 1193.76059 · doi:10.1017/S0022112010000510
[7] DOI: 10.1175/1520-0469(1998)055&lt;0237:ALTOES&gt;2.0.CO;2 · doi:10.1175/1520-0469(1998)055<0237:ALTOES>2.0.CO;2
[8] DOI: 10.1063/1.1327594 · Zbl 1184.76235 · doi:10.1063/1.1327594
[9] DOI: 10.1175/1520-0469(1979)036&lt;1205:MFEITA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
[10] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072 · doi:10.1017/S0022112004009346
[11] DOI: 10.1109/TCS.1978.1084534 · Zbl 0397.93009 · doi:10.1109/TCS.1978.1084534
[12] Graham, Kronecker Products and Matrix Calculus with Applications (1981)
[13] DOI: 10.1063/1.1566753 · Zbl 1186.76556 · doi:10.1063/1.1566753
[14] DOI: 10.1017/S0022112002008789 · Zbl 1029.76057 · doi:10.1017/S0022112002008789
[15] DOI: 10.1080/03091927409365786 · doi:10.1080/03091927409365786
[16] DOI: 10.1088/0034-4885/68/8/R06 · doi:10.1088/0034-4885/68/8/R06
[17] DOI: 10.1175/2009JAS3170.1 · doi:10.1175/2009JAS3170.1
[18] DOI: 10.1063/1.2889012 · doi:10.1063/1.2889012
[19] DOI: 10.1175/1520-0485(1993)023&lt;1346:GOMFAJ&gt;2.0.CO;2 · doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
[20] DOI: 10.1175/2009JPO4093.1 · doi:10.1175/2009JPO4093.1
[21] DOI: 10.1175/2009JAS2989.1 · doi:10.1175/2009JAS2989.1
[22] Starr, Physics of Negative Viscosity Phenomena (1968)
[23] DOI: 10.1017/S0022112009006375 · Zbl 1181.76071 · doi:10.1017/S0022112009006375
[24] DOI: 10.1063/1.3258666 · doi:10.1063/1.3258666
[25] DOI: 10.1357/002224005774464210 · doi:10.1357/002224005774464210
[26] DOI: 10.1063/1.1398044 · Zbl 1184.76042 · doi:10.1063/1.1398044
[27] DOI: 10.1175/2009JAS2941.1 · doi:10.1175/2009JAS2941.1
[28] DOI: 10.1175/1520-0469(1987)044&lt;1166:ASVONF&gt;2.0.CO;2 · doi:10.1175/1520-0469(1987)044<1166:ASVONF>2.0.CO;2
[29] DOI: 10.1016/j.icarus.2006.08.007 · doi:10.1016/j.icarus.2006.08.007
[30] DOI: 10.1175/2008JAS2611.1 · doi:10.1175/2008JAS2611.1
[31] DOI: 10.1175/JAS4016.1 · doi:10.1175/JAS4016.1
[32] DOI: 10.1017/S0022112091003038 · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[33] DOI: 10.1175/1520-0469(2003)060&lt;2101:SSOTJ&gt;2.0.CO;2 · doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
[34] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[35] DOI: 10.1007/s001620050091 · Zbl 0926.76057 · doi:10.1007/s001620050091
[36] DOI: 10.1175/2007JAS2219.1 · doi:10.1175/2007JAS2219.1
[37] DOI: 10.1175/1520-0469(1996)053&lt;2025:GSTPIA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
[38] Read, Geophys. Res. Lett. 87 pp 1961– (2004)
[39] DOI: 10.1175/1520-0469(1995)052&lt;1642:SDOTMA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1995)052<1642:SDOTMA>2.0.CO;2
[40] Rayleigh, Proc. Lond. Math. Soc. 9 pp 57– (1880)
[41] DOI: 10.1175/1520-0469(1994)051&lt;2685:ATFTSE&gt;2.0.CO;2 · doi:10.1175/1520-0469(1994)051<2685:ATFTSE>2.0.CO;2
[42] DOI: 10.1175/1520-0469(1984)041&lt;0246:FCSALM&gt;2.0.CO;2 · doi:10.1175/1520-0469(1984)041<0246:FCSALM>2.0.CO;2
[43] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[44] DOI: 10.1063/1.869327 · Zbl 1185.76776 · doi:10.1063/1.869327
[45] DOI: 10.1175/1520-0469(1993)050&lt;0200:SFOPVI&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<0200:SFOPVI>2.0.CO;2
[46] DOI: 10.1175/1520-0469(1997)054&lt;0435:SFOTWE&gt;2.0.CO;2 · doi:10.1175/1520-0469(1997)054<0435:SFOTWE>2.0.CO;2
[47] DOI: 10.1175/1520-0469(1993)050&lt;4044:SDOBW&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2
[48] DOI: 10.1103/PhysRevLett.103.118501 · doi:10.1103/PhysRevLett.103.118501
[49] DOI: 10.1175/1520-0469(1993)050&lt;1792:TADUOP&gt;2.0.CO;2 · doi:10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2
[50] DOI: 10.1103/PhysRevLett.91.224502 · doi:10.1103/PhysRevLett.91.224502
[51] DOI: 10.1063/1.3265962 · Zbl 1183.76187 · doi:10.1063/1.3265962
[52] DOI: 10.1175/1520-0469(1972)029&lt;0258:BIORWM&gt;2.0.CO;2 · doi:10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2
[53] DOI: 10.1080/03091929708208989 · doi:10.1080/03091929708208989
[54] DOI: 10.1175/1520-0469(1985)042&lt;0433:PABAVI&gt;2.0.CO;2 · doi:10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2
[55] DOI: 10.1088/0741-3335/47/5/R01 · doi:10.1088/0741-3335/47/5/R01
[56] DOI: 10.1063/1.1564826 · Zbl 1186.76310 · doi:10.1063/1.1564826
[57] DOI: 10.1175/1520-0469(1996)053&lt;1781:TQLEOA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<1781:TQLEOA>2.0.CO;2
[58] DOI: 10.1175/1520-0469(1951)008&lt;0307:VTARTT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1951)008<0307:VTARTT>2.0.CO;2
[59] DOI: 10.1175/1520-0469(1995)052&lt;2531:ASELSA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1995)052<2531:ASELSA>2.0.CO;2
[60] DOI: 10.1073/pnas.78.4.1981 · doi:10.1073/pnas.78.4.1981
[61] DOI: 10.1023/B:GEOP.0000028164.58516.b2 · doi:10.1023/B:GEOP.0000028164.58516.b2
[62] DOI: 10.1175/JAS4015.1 · doi:10.1175/JAS4015.1
[63] DOI: 10.1175/1520-0469(2001)058&lt;3762:ATFTFA&gt;2.0.CO;2 · doi:10.1175/1520-0469(2001)058<3762:ATFTFA>2.0.CO;2
[64] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[65] DOI: 10.1175/1520-0469(1999)056&lt;3692:SMOSFT&gt;2.0.CO;2 · doi:10.1175/1520-0469(1999)056<3692:SMOSFT>2.0.CO;2
[66] DOI: 10.1002/qj.49705221708 · doi:10.1002/qj.49705221708
[67] DOI: 10.1175/1520-0469(1996)053&lt;1617:CQTBMS&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<1617:CQTBMS>2.0.CO;2
[68] DOI: 10.1038/35001021 · doi:10.1038/35001021
[69] DOI: 10.1126/science.248.4953.308 · doi:10.1126/science.248.4953.308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.