×

Accelerating fatigue simulations of a phase-field damage model for rubber. (English) Zbl 1506.74020

Summary: Phase-field damage models are able to describe crack nucleation as well as crack propagation and coalescence without additional technicalities, because cracks are treated in a continuous, spatially finite manner. Previously, we have developed a phase-field model to capture the rate-dependent failure of rubber, and we have further enhanced it to describe failure due to cyclic loading. Although the model accurately describes fatigue failure, the associated cyclic simulations are slow. Therefore, this contribution presents an acceleration scheme for cyclic simulations of our previously introduced phase-field damage model so that the simulation speed is increased to facilitate large-scale simulations of industrially relevant problems. We formulate an explicit and an implicit cycle jump method, which, depending on the selected jump size, reduce the calculation time up to 99.5%. To circumvent the manual tuning of the jump size, we also present an adaptive jump size selection procedure. Thanks to the implicit adaptive scheme, all material parameters are identified from experiments, which include fatigue crack nucleation and crack growth. Finally, the model and its parameters are validated with additional measurements of the fatigue crack growth rate.

MSC:

74A45 Theories of fracture and damage
74R10 Brittle fracture
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Loew, P. J.; Peters, B.; Beex, L. A.A., Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation, Mech. Mater., 142 (2020)
[2] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[3] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[4] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[5] Nguyen, V. P.; Lloberas-Valls, O.; Stroeven, M.; Sluys, L. J., Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks, Comput. Methods Appl. Mech. Engrg., 200, 1220-1236 (2011) · Zbl 1225.74070
[6] Wulfinghoff, S., A generalized cohesive zone model and a grain boundary yield criterion for gradient plasticity derived from surface- and interface-related arguments, Int. J. Plast., 92, 57-78 (2017)
[7] Beex, L. A.A.; Peerlings, R. H.J., An experimental and computational study of laminated paperboard creasing and folding, Int. J. Solids Struct., 46, 24, 4192-4207 (2009) · Zbl 1176.74002
[8] Beex, L. A.A.; Peerlings, R. H.J., On the influence of delamination on laminated paperboard creasing and folding, Phil. Trans. R. Soc. A, 370, 1965, 1912-1924 (2012)
[9] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[10] Bordas, S.; Nguyen, V. P.; Dunant, C.; Guidoum, A.; Nguyen-Dang, H., An extended finite element library, Internat. J. Numer. Methods Engrg., 71, 6, 703-732 (2007) · Zbl 1194.74367
[11] Singh, I. V.; Mishra, B. K.; Bhattacharya, S.; Patil, R. U., The numerical simulation of fatigue crack growth using extended finite element method, Int. J. Fatigue, 36, 1, 109-119 (2012)
[12] Wang, Y.; Waisman, H., From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Engrg., 299, 57-89 (2016) · Zbl 1425.74410
[13] Peerlings, R. H.J.; de Borst, R.; Brekelmans, W. A.M.; de Vree, J. H.P., Gradient enhanced damage for quasi-brittle materials, Internat. J. Numer. Methods Engrg., 39, 19, 3391-3403 (1996) · Zbl 0882.73057
[14] Poh, L. H.; Sun, G., Localizing gradient damage model with decreasing interactions, Internat. J. Numer. Methods Engrg., 110, 6, 503-522 (2017)
[15] Sun, G.; Poh, L. H., Homogenization of intergranular fracture towards a transient gradient damage model, J. Mech. Phys. Solids, 95, 374-392 (2016)
[16] Steinke, C.; Zreid, I.; Kaliske, M., On the relation between phase-field crack approximation and gradient damage modelling, Comput. Mech., 59, 5, 717-735 (2017)
[17] de Borst, R.; Verhoosel, C. V., Gradient damage vs phase-field approaches for fracture: Similarities and differences, Comput. Methods Appl. Mech. Engrg., 312, 78-94 (2016) · Zbl 1439.74347
[18] Mandal, T. K.; Nguyen, V. P.; Heidarpour, A., Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study, Eng. Fract. Mech., 207, 48-67 (2019)
[19] Miehe, C.; Schänzel, L. M., Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 1, 93-113 (2014) · Zbl 1323.74012
[20] Loew, P. J.; Peters, B.; Beex, L. A.A., Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266-294 (2019)
[21] Wu, J.; McAuliffe, C.; Waisman, H.; Deodatis, G., Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method, Comput. Methods Appl. Mech. Engrg. (2016) · Zbl 1439.74097
[22] San, B.; Waisman, H., Optimization of carbon black polymer composite microstructure for rupture resistance, J. Appl. Mech., 84, 2, Article 021005 pp. (2016)
[23] Russ, J. B.; Waisman, H., Topology optimization for brittle fracture resistance, Comput. Methods Appl. Mech. Engrg., 347, 238-263 (2019) · Zbl 1440.74311
[24] Amendola, G.; Fabrizio, M.; Golden, J. M., Thermomechanics of damage and fatigue by a phase field model, J. Therm. Stresses, 39, 5, 487-499 (2016)
[25] Caputo, M.; Fabrizio, M., Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293, 400-408 (2015) · Zbl 1349.74030
[26] Boldrini, J. L.; Barros de Moraes, E. A.; Chiarelli, L. R.; Fumes, F. G.; Bittencourt, M. L., A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue, Comput. Methods Appl. Mech. Engrg., 312, 395-427 (2016) · Zbl 1439.74023
[27] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech., 190, 53-73 (2018)
[28] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput. Methods Appl. Mech. Engrg., 12731 (2019) · Zbl 1442.74195
[29] Mesgarnejad, A.; Imanian, A.; Karma, A., Phase-field models for fatigue crack growth, Theor. Appl. Fract. Mech., 103 (2019)
[30] Lo, Y. S.; Borden, M. J.; Ravi-Chandar, K.; Landis, C. M., A phase-field model for fatigue crack growth, J. Mech. Phys. Solids, 132 (2019) · Zbl 1480.74019
[31] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[32] Cheng, J.; Tu, X.; Ghosh, S., Wavelet-enriched adaptive hierarchical FE model for coupled crystal plasticity-phase field modeling of crack propagation in polycrystalline microstructures, Comput. Methods Appl. Mech. Engrg., 361 (2019)
[33] Patil, R. U.; Mishra, B. K.; Singh, I. V., A local moving extended phase field method (LMXPFM) for failure analysis of brittle materials, Comput. Methods Appl. Mech. Engrg., 342, 674-709 (2018) · Zbl 1440.74347
[34] Shanthraj, P.; Sharma, L.; Svendsen, B.; Roters, F.; Raabe, D., A phase field model for damage in elasto-viscoplastic materials, Comput. Methods Appl. Mech. Engrg., 312, 167-185 (2016) · Zbl 1439.74068
[35] Wu, J. Y.; Huang, Y.; Nguyen, V. P., On the BFGS monolithic algorithm for the unified phase field damage theory, Comput. Methods Appl. Mech. Engrg., 360 (2020) · Zbl 1441.74196
[36] Van Paepegem, W.; Degrieck, J., Fatigue degradation modelling of plain woven glass/epoxy composites, Composites - Part A: Applied Science and Manufacturing, 32, 10, 1433-1441 (2001)
[37] Turon, A.; Costa, J.; Camanho, P. P.; Dávila, C. G., Simulation of delamination in composites under high-cycle fatigue, Composites A, 38, 11, 2270-2282 (2007)
[38] Cojocaru, D.; Karlsson, A. M., A simple numerical method of cycle jumps for cyclically loaded structures, Int. J. Fatigue, 28, 12, 1677-1689 (2006)
[39] Peerlings, R. H.J.; Brekelmans, W. A.M.; De Borst, R.; Geers, M. G.D., Gradient-enhanced damage modelling of high-cycle fatigue, Internat. J. Numer. Methods Engrg., 49, 12, 1547-1569 (2000) · Zbl 0995.74056
[40] Oskay, C.; Fish, J., Fatigue life prediction using 2-scale temporal asymptotic homogenization, Internat. J. Numer. Methods Engrg., 61, 3, 329-359 (2004) · Zbl 1075.74613
[41] Heczko, J.; Kottner, R., Modeling of material damage using finite elements and time homogenization in case of finite strain, Appl. Math. Comput., 1-10 (2017)
[42] Manchiraju, S.; Asai, M.; Ghosh, S., A dual-time-scale finite element model for simulating cyclic deformation of polycrystalline alloys, J. Strain Anal. Eng. Des., 42, 4, 183-200 (2007)
[43] Joseph, D. S.; Chakraborty, P.; Ghosh, S., Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading, Comput. Methods Appl. Mech. Engrg., 199, 33-36, 2177-2194 (2010) · Zbl 1231.74419
[44] Beusink, M., Multi-Time Scale Methods for an Efficient Finite Element Analysis of Fatigue Problems (2013), Eindhoven University of Technology, (Master’s thesis)
[45] Gurtin, M. E., Generalized cahn-hilliard equations based on a microforce balance, Physica, 2003, 4, 178-192 (1996) · Zbl 0885.35121
[46] Frémond, M.; Nedjar, B., Damage, gradient of damage and principle of virtual power, Int. J. Solids Struct., 33, 8, 1083-1103 (1996) · Zbl 0910.73051
[47] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[48] Kumar, A.; Francfort, G. A.; Lopez-Pamies, O., Fracture and healing of elastomers: A phase-transition theory and numerical implementation, J. Mech. Phys. Solids (2018)
[49] Stumpf, H.; Hackl, K., Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-brittle materials, Int. J. Solids Struct., 40, 6, 1567-1584 (2003) · Zbl 1032.74511
[50] Wu, J. Y.; Nguyen, P. V., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, l, 20-42 (2018)
[51] Wu, J. Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[52] Yeoh, O. H., Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 5, 754-771 (2011)
[53] Shen, R.; Waisman, H.; Guo, L., Fracture of viscoelastic solids modeled with a modified phase field method, Comput. Methods Appl. Mech. Engrg., 346, 862-890 (2019) · Zbl 1440.74365
[54] Aranda-Iglesias, D.; Vadillo, G.; Rodríguez-Martínez, J. A.; Volokh, K. Y., Modeling deformation and failure of elastomers at high strain rates, Mech. Mater., 104, 85-92 (2017)
[55] Le Saux, V.; Marco, Y.; Calloch, S.; Charrier, P.; Taveau, D., Heat build-up of rubber under cyclic loadings: Validation of an efficient demarch to predict the temperature fields, Rubber Chem. Technol., 86, 1, 38-56 (2013)
[56] Lev, Y.; Faye, A.; Volokh, K. Y., Thermoelastic deformation and failure of rubberlike materials, J. Mech. Phys. Solids, 122, 538-554 (2019)
[57] Stadlbauer, F.; Koch, T.; Archodoulaki, V. M.; Planitzer, F.; Fidi, W.; Holzner, A., Influence of experimental parameters on fatigue crack growth and heat build-up in rubber, Materials, 6, 12, 5502-5516 (2013)
[58] Gent, A. N., Engineering with Rubber: How to Design Rubber Components (2012), Hanser Publishers
[59] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[60] Cristiano, A.; Marcellan, A.; Long, R.; Hui, C.-Y.; Stolk, J.; Creton, C., An experimental investigation of fracture by cavitation of model elastomeric networks, J. Polym. Sci. B, 48, 1409-1422 (2010)
[61] Zine, A.; Benseddiq, N.; Naït Abdelaziz, M., Rubber fatigue life under multiaxial loading: Numerical and experimental investigations, Int. J. Fatigue, 33, 10, 1360-1368 (2011)
[62] Rosendahl, P. L.; Drass, M.; Felger, J.; Schneider, J.; Becker, W., Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers, Int. J. Solids Struct., 166, 32-46 (2019)
[63] Fassin, M.; Eggersmann, R.; Wulfinghoff, S.; Reese, S., Efficient algorithmic incorporation of tension compression asymmetry into an anisotropic damage model, Comput. Methods Appl. Mech. Engrg., 354, 932-962 (2019) · Zbl 1441.74194
[64] Wu, J. Y.; Nguyen, V. P.; Zhou, H.; Huang, Y., A variationally consistent phase-field anisotropic damage model for fracture, Comput. Methods Appl. Mech. Engrg., 358 (2020) · Zbl 1441.74220
[65] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[66] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2001), John Wiley & Sons
[67] Wu, J. Y.; Cervera, M., A novel positive/negative projection in energy norm for the damage modeling of quasi-brittle solids, Int. J. Solids Struct., 139-140, 250-269 (2018)
[68] Steinke, C.; Kaliske, M., A phase-field crack model based on directional stress decomposition, Comput. Mech., 63, 5, 1019-1046 (2019) · Zbl 1468.74053
[69] Kiewel, H.; Aktaa, J.; Munz, D., Application of an extrapolation method in thermocyclic failure analysis, Comput. Methods Appl. Mech. Engrg., 182, 55-71 (2000) · Zbl 0952.74065
[70] Abdul-Latif, A.; Razafindramary, D.; Rakotoarisoa, J. C., New hybrid cycle jump approach for predicting low-cycle fatigue behavior by a micromechanical model with the damage induced anisotropy concept, Int. J. Mech. Sci., 160, 397-411 (2019)
[71] Hainsworth, S. V., An environmental scanning electron microscopy investigation of fatigue crack initiation and propagation in elastomers, Polym. Test., 26, 1, 60-70 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.