zbMATH — the first resource for mathematics

Efficient simulation of free surface flows with discrete least-squares meshless method using a priori error estimator. (English) Zbl 1271.76236
Summary: In this article, a priori error estimate is employed to improve the efficiency of simulating free surface flows with discrete least-squares meshless (DLSM) method. DLSM is a fully least-squares approach in which both function approximation and the discretisation of the governing differential equations is carried out using a least-squares concept. The meshless shape functions are derived using the moving least-squares (MLS) method of function approximation. The discretised equations are obtained via a discrete least-squares method in which the sum of the squared residuals are minimised with respect to unknown nodal parameters. The governing equations of mass and momentum conservation are solved in a Lagrangian form using a pressure projection method. The proposed simulation strategy is composed of error estimation and a node moving refinement method. Since in free surface problems, the position of the free surface is of primary interest, a priori error estimate is used which automatically associates higher error to the nodes near the free surface. The node moving refinement method is used to construct a nodal configuration with dense nodal arrangement near the free surface. Four test problems namely dam break, evolution of a water bubble, solitary wave propagation and wave run-up on slope are investigated to test the ability and efficiency of the proposed efficient simulation method.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B07 Free-surface potential flows for incompressible inviscid fluids
Full Text: DOI
[1] Afshar M. H., WIT Transactions on Modelling and Simulation 42 pp 23– (2005)
[2] DOI: 10.1002/fld.1571 · Zbl 1146.65077
[3] DOI: 10.1002/fld.1897 · Zbl 1168.65395
[4] DOI: 10.1016/j.fluiddyn.2005.12.002 · Zbl 1178.76291
[5] DOI: 10.1002/fld.1526 · Zbl 1353.76018
[6] DOI: 10.1016/j.fluiddyn.2007.12.001 · Zbl 1387.76088
[7] DOI: 10.1007/s004660050346 · Zbl 0932.76067
[8] Babuska I., Mathematics of finite elements and application pp 125– (1975)
[9] DOI: 10.1002/nme.1620121010 · Zbl 0396.65068
[10] Babuska I., Computational Methods in Nonlinear Mechanics pp Amsterdam, Nort– (1980)
[11] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077
[12] DOI: 10.1002/nme.1620300813
[13] DOI: 10.1080/10618560290004017 · Zbl 1082.76588
[14] DOI: 10.1016/S0141-1187(03)00002-6
[15] DOI: 10.1016/j.enganabound.2008.03.004 · Zbl 1160.65339
[16] DOI: 10.1016/j.oceaneng.2004.10.013
[17] DOI: 10.1016/j.cma.2005.10.020 · Zbl 1122.76055
[18] DOI: 10.1016/0021-9991(81)90145-5 · Zbl 0462.76020
[19] DOI: 10.1016/S0029-5493(98)00270-2
[20] DOI: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C · Zbl 0928.76086
[21] DOI: 10.1016/S0168-9274(02)00213-1 · Zbl 1061.76031
[22] DOI: 10.1090/S0025-5718-1981-0616367-1
[23] DOI: 10.1016/j.cma.2005.11.015 · Zbl 1128.74050
[24] DOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057
[25] Martin J. C., Philosophical Transactions of the Royal Society London (1952)
[26] DOI: 10.1080/10618560902870258 · Zbl 1184.76620
[27] DOI: 10.1006/jcph.1994.1034 · Zbl 0794.76073
[28] DOI: 10.1016/0167-2789(96)00110-8 · Zbl 0899.76099
[29] DOI: 10.1061/(ASCE)0733-950X(1999)125:3(145)
[30] DOI: 10.1016/S0045-7825(96)01088-2 · Zbl 0894.76065
[31] DOI: 10.1016/j.cma.2004.07.054 · Zbl 1193.76083
[32] DOI: 10.1002/nme.1620230703 · Zbl 0594.76089
[33] DOI: 10.1016/S0309-1708(03)00030-7
[34] DOI: 10.1080/10618560008940722 · Zbl 1017.76064
[35] DOI: 10.1016/j.compfluid.2009.09.017 · Zbl 1242.76257
[36] DOI: 10.1080/10618560902886882 · Zbl 1184.76678
[37] DOI: 10.1007/BF00370106 · Zbl 0699.76035
[38] DOI: 10.1016/j.finel.2005.01.003
[39] DOI: 10.1002/nme.1620240206 · Zbl 0602.73063
[40] DOI: 10.1002/nme.1620330702 · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.