×

zbMATH — the first resource for mathematics

Self-induced systems. (English) Zbl 1408.37033
Summary: A minimal Cantor system is said to be self-induced whenever it is conjugate to one of its induced systems. Substitution subshifts and some odometers are classical examples, and we show that these are the only examples in the equicontinuous or expansive case. Nevertheless, we exhibit a zero entropy self-induced system that is neither equicontinuous nor expansive. We also provide non-uniquely ergodic self-induced systems with infinite entropy. Moreover, we give a characterization of self-induced minimal Cantor systems in terms of substitutions on finite or infinite alphabets.

MSC:
37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
37B10 Symbolic dynamics
54H20 Topological dynamics (MSC2010)
94A55 Shift register sequences and sequences over finite alphabets in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnoux, P., Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore, Bull. Soc. Math. France, 116, 489-500, (1988) · Zbl 0703.58045
[2] Arnoux, P.; Ito, S., Pisot substitutions and Rauzy fractals bull, Belg. Math. Soc., 8, 181-207, (2001) · Zbl 1007.37001
[3] Arnoux, P.; Rauzy, G., Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France, 119, 199-215, (1991) · Zbl 0789.28011
[4] Boshernitzan, M.; Carroll, C. R., An extension of lagrange’s theorem to interval exchange transformations over quadratic fields, J. Anal. Math., 72, 21-44, (1997) · Zbl 0931.28013
[5] X. Bressaud and Y. Jullian, Interval exchange transformation extension of a substitution dynamical system, Confluentes Math. 4, (2012), no. 4, 1250005. · Zbl 1353.37025
[6] Coven, E.; Dykstra, A.; Keane, M.; LeMasurier, M., Topological conjugacy to given constant length substitution minimal systems, Indag. Math. (N.S.), 25, 646-651, (2014) · Zbl 1322.37006
[7] Dahl, H.; Molberg, M., Induced subsystems associated to a Cantor minimal system, Colloq. Math., 117, 207-221, (2009) · Zbl 1182.54044
[8] Dartnell, P.; Durand, F.; Maass, A., Orbit equivalence and Kakutani equivalence with Sturmian subshifts, Studia Math., 142, 25-45, (2000) · Zbl 0976.54041
[9] Junco, A.; Rudolph, D. J.; Weiss, B., Measured topological orbit and Kakutani equivalence, Discrete Contin. Dyn Syst. Ser. S, 2, 221-238, (2009) · Zbl 1230.37008
[10] T. Downarowicz, Survey of odometers and Toeplitz flows,in Algebraic and Topological Dynamics, Amer. Math. Soc., Providence RI, 2005, pp. 7-37. · Zbl 1096.37002
[11] Downarowicz, T.; Maass, A., Finite-rank Bratteli-vershik diagrams are expansive, Ergodic Theory Dynam. Systems, 28, 739-747, (2008) · Zbl 1171.37007
[12] Durand, F., Contributions à l’étude des suites et systèmes dynamiques substitutifs, (1996)
[13] Durand, F., A characterization of substitutive sequences using return words, Discrete Math., 179, 89-101, (1998) · Zbl 0895.68087
[14] Durand, F., Combinatorics on Bratteli diagrams and dynamical systems, 324-372, (2010), Cambridge · Zbl 1272.37006
[15] Durand, F., Decidability of uniform recurrence of morphic sequences, Internat. J. Found. Comput. Sci., 24, 123-146, (2013) · Zbl 1286.68279
[16] Durand, F.; Host, B.; Skau, C., Substitutive dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, 19, 953-993, (1999) · Zbl 1044.46543
[17] Dykstra, A.; Rudolph, D. J., Any two irrational rotations are nearly continuously Kakutani equivalent, J. Anal. Math., 110, 339-384, (2010) · Zbl 1192.37008
[18] Ferenczi, S., Systems of finite rank, Colloq. Math., 73, 35-65, (1997) · Zbl 0883.28014
[19] Ferenczi, S., Substitution dynamical systems on infinite alphabets, Ann. Inst. Fourier (Grenoble), 56, 2315-2343, (2006) · Zbl 1147.37007
[20] Ferenczi, S.; Holton, C.; Zamboni, L. Q., Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories, J. Anal. Math., 89, 239-276, (2003) · Zbl 1130.37324
[21] Ferenczi, S.; Mauduit, C.; Nogueira, A., Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. Ecole Norm. Sup., 29, 519-533, (1996) · Zbl 0866.11023
[22] N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002. · Zbl 1014.11015
[23] Giordano, T.; Putnam, I.; Skau, C., Topological orbit equivalence and C* crossed products, J. Reine Angew. Math., 469, 51-111, (1995) · Zbl 0834.46053
[24] Gjerde, R.; Johansen, O., Bratteli-vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam. Systems, 20, 1687-1710, (2000) · Zbl 0992.37008
[25] Gjerde, R.; Johansen, O., Bratteli-vershik models for Cantor minimal systems associated to interval exchange transformations, Math. Scand., 90, 87-100, (2002) · Zbl 1019.37006
[26] Herman, R. H.; Putnam, I.; Skau, C. F., Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., 3, 827-864, (1992) · Zbl 0786.46053
[27] Jullian, Y., An algorithm to identify automorphisms which arise from self-induced interval exchange transformations, Math. Z., 274, 33-55, (2013) · Zbl 1291.37013
[28] Kosek, W.; Ormes, N.; Rudolph, D. J., Flow-orbit equivalence for minimal Cantor systems, Ergodic Theory Dynam. Systems, 28, 481-500, (2008) · Zbl 1154.37311
[29] P. Kurka, Topological and Symbolic Dynamics, Société Mathématique de France, Paris, 2003.
[30] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995. · Zbl 1106.37301
[31] Méla, X.; Petersen, K., Dynamical properties of the Pascal adic transformation, Ergodic Theory Dynam. Systems, 25, 227-256, (2005) · Zbl 1069.37007
[32] Mossé, B., Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci., 99, 327-334, (1992) · Zbl 0763.68049
[33] Mossé, B., Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France, 124, 329-346, (1996) · Zbl 0855.68072
[34] Nogueira, A., Nonorientable recurrence of flows and interval exchange transformations, J. Differential Equations, 70, 53-166, (1987) · Zbl 0643.58003
[35] Ornstein, D. S.; Rudolph, D. J.; Weiss, B., Equivalence of measure preserving transformations, (1982) · Zbl 0504.28019
[36] K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983. · Zbl 0507.28010
[37] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Springer-Verlag, Berlin, 1987. · Zbl 0642.28013
[38] Rauzy, G., Échanges d’intervalles et transformations induites, Acta Arith., 34, 315-328, (1979) · Zbl 0414.28018
[39] Rauzy, G., Nombres algébriques et substitutions, Bull. Soc. Math. France, 110, 147-178, (1982) · Zbl 0522.10032
[40] Roychowdhury, M. R.; Rudolph, D. J., Nearly continuous Kakutani equivalence of adding machines, J. Mod. Dyn., 3, 103-119, (2009) · Zbl 1185.28024
[41] Veech, W., Interval exchange transformations, J. Anal. Math., 33, 222-272, (1978) · Zbl 0455.28006
[42] Williams, S., Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67, 95-107, (1984) · Zbl 0584.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.