×

Bifurcations from steady to quasi-periodic flows in a laterally heated cavity filled with low Prandtl number fluids. (English) Zbl 1415.76583

Summary: This study deals with the transition toward quasi-periodicity of buoyant convection generated by a horizontal temperature gradient in a three-dimensional parallelepipedic cavity with dimensions \(4\times 2\times 1\) (length \(\times\) width \(\times\) height). Numerical continuation techniques, coupled with an Arnoldi method, are used to locate the steady and Hopf bifurcation points as well as the different steady and periodic flow branches emerging from them for Prandtl numbers ranging from 0 to 0.025 (liquid metals). Our results highlight the existence of two steady states along with many periodic cycles, all with different symmetries. The bifurcation scenarios consist of complex paths between these different solutions, giving a succession of stable flow states as the Grashof number is increased, from steady to periodic and quasi-periodic. The change of these scenarios with the Prandtl number, in connection with the crossing of bifurcation points, was carefully analysed.

MSC:

76R05 Forced convection
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76E30 Nonlinear effects in hydrodynamic stability
76E06 Convection in hydrodynamic stability
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Afrid, M.; Zebib, A., Oscillatory three-dimensional convection in rectangular cavities and enclosures, Phys. Fluids, 2, 8, 1318-1327, (1990) · doi:10.1063/1.857582
[2] Bacharoudis, E.; Vrachopoulos, M. G.; Koukou, M. K.; Margaris, D.; Filios, A. E.; Mavrommatis, S. A., Study of the natural convection phenomena inside a wall solar chimney with one wall adiabatic and one wall under a heat flux, Appl. Therm. Engng, 27, 13, 2266-2275, (2007) · doi:10.1016/j.applthermaleng.2007.01.021
[3] Ben Hadid, H.; Henry, D., Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field. Part 2. Three dimensional flow, J. Fluid Mech., 333, 57-83, (1997) · Zbl 0897.76034 · doi:10.1017/S002211209600420X
[4] Bergeon, A.; Henry, D.; Ben Hadid, H.; Tuckerman, L. S., Marangoni convection in binary mixtures with Soret effect, J. Fluid Mech., 375, 143-177, (1998) · Zbl 0936.76019 · doi:10.1017/S0022112098002614
[5] Braunsfurth, M. G.; Mullin, T., An experimental study of oscillatory convection in liquid gallium, J. Fluid Mech., 327, 199-219, (1996) · doi:10.1017/S0022112096008518
[6] Cormack, D. E.; Leal, L.; Imberger, J., Natural convection in a shallow cavity with differentially heated end walls. Part 1. Asymptotic theory, J. Fluid Mech., 65, 2, 209-229, (1974) · Zbl 0298.76047 · doi:10.1017/S0022112074001352
[7] Cormack, D. E.; Leal, L.; Seinfeld, J. H., Natural convection in a shallow cavity with differentially heated end walls. Part 2. Numerical solutions, J. Fluid Mech., 65, 2, 231-246, (1974) · Zbl 0298.76048 · doi:10.1017/S0022112074001364
[8] Daviaud, F.; Vince, J. M., Traveling waves in a fluid layer subjected to a horizontal temperature gradient, Phys. Rev. E, 48, 4432-4436, (1993)
[9] Dhanaraj, G.; Byrappa, K.; Prasad, V.; Dudley, M., Springer Handbook of Crystal Growth, (2010), Springer · doi:10.1007/978-3-540-74761-1
[10] Dupont, S.; Marchal, J. M.; Crochet, M.; Geyling, F. T., Numerical simulation of the horizontal Bridgman growth. Part II. Three-dimensional flow, Intl J. Numer. Meth. Fluids, 7, 1, 49-67, (1987) · Zbl 0607.76088 · doi:10.1002/fld.1650070105
[11] Gershuni, G.; Laure, P.; Myznikov, V.; Roux, B.; Zhukhovitsky, E., On the stability of plane-parallel advective flows in long horizontal layers, Microgravity Q., 2, 141-151, (1992)
[12] Hart, J. E., Stability of thin non-rotating Hadley circulations, J. Atmos. Sci., 29, 687-696, (1972) · doi:10.1175/1520-0469(1972)029<0687:SOTNRH>2.0.CO;2
[13] Henry, D.; Ben Hadid, H., Multiple flow transitions in a box heated from the side in low-Prandtl-number fluids, Phys. Rev. E, 76, (2007) · Zbl 1182.76314
[14] Henry, D.; Buffat, M., Two- and three-dimensional numerical simulations of the transition to oscillatory convection in low-Prandtl-number fluids, J. Fluid Mech., 374, 145-171, (1998) · Zbl 0933.76085 · doi:10.1017/S0022112098002523
[15] Hof, B.; Juel, A.; Zhao, L.; Henry, D.; Ben Hadid, H.; Mullin, T., On the onset of oscillatory convection in molten gallium, J. Fluid Mech., 515, 391-413, (2004) · Zbl 1060.76546 · doi:10.1017/S0022112004000527
[16] Hung, M. C.; Andereck, C. D., Transitions in convection driven by a horizontal temperature gradient, Phys. Lett. A, 132, 5, 253-258, (1988) · doi:10.1016/0375-9601(88)90560-9
[17] Hurle, D. T. J., Temperature oscillations in molten metals and their relationship to the growth state in melt grown crystals, Phil. Mag., 13, 305-310, (1966) · doi:10.1080/14786436608212608
[18] Hurle, D. T. J.; Jakeman, E.; Johnson, C. P., Convective temperature oscillations in molten gallium, J. Fluid Mech., 64, 565-576, (1974) · doi:10.1017/S0022112074002540
[19] Juel, A.; Mullin, T.; Ben Hadid, H.; Henry, D., Magnetohydrodynamic convection in molten gallium, J. Fluid Mech., 378, 97-118, (1999) · doi:10.1017/S0022112098003061
[20] Juel, A.; Mullin, T.; Ben Hadid, H.; Henry, D., Three-dimensional free convection in molten gallium, J. Fluid Mech., 436, 267-281, (2001) · Zbl 0967.76519 · doi:10.1017/S0022112001003937
[21] Karniadakis, G. E., High-order splitting methods for incompressible Navier-Stokes equations, J. Comput. Phys., 97, 414-443, (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[22] Klausmeier, C. A., Floquet theory: a useful tool for understanding nonequilibrium dynamics, Theor. Ecol., 1, 53-161, (2008) · doi:10.1007/s12080-008-0016-2
[23] Lappa, M., Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt. Part 2. Lateral heating and the Hadley circulation, Comptes Rendus Mécanique, 335, 5, 261-268, (2007) · doi:10.1016/j.crme.2007.05.004
[24] Laure, P., Étude des mouvements de convection dans une cavité rectangulaire soumise à un gradient de température horizontal, J. Theor. Appl. Mech., 6, 351-382, (1987) · Zbl 0616.76051
[25] Laure, P.; Roux, B., Linear and non-linear analysis of the Hadley circulation, J. Cryst. Growth, 97, 226-234, (1989) · doi:10.1016/0022-0248(89)90264-9
[26] Lyubimova, T. P.; Lyubimov, D. V.; Morozov, V. A.; Henry, D.; Ben Hadid, H., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 2. Effect of a magnetic field, J. Fluid Mech., 635, 297-319, (2009) · Zbl 1183.76714 · doi:10.1017/S0022112009007575
[27] Lyubimova, T. P.; Lyubimov, D. V.; Morozov, V. A.; Scuridin, R. V.; Ben Hadid, H.; Henry, D., Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 1. Effect of aspect ratio and Prandtl number, J. Fluid Mech., 635, 275-295, (2009) · Zbl 1183.76715 · doi:10.1017/S0022112009007587
[28] Mamun, C. K.; Tuckerman, L. S., Asymmetry and Hopf bifurcation in spherical Couette flow, Phys. Fluids, 7, 1, 80-91, (1995) · Zbl 0836.76033 · doi:10.1063/1.868730
[29] Mckell, K. E.; Broomhead, D. S.; Jones, R.; Hurle, D. T. J., Torus doubling in convecting molten gallium, Europhys. Lett., 12, 6, 513-518, (1990) · doi:10.1209/0295-5075/12/6/007
[30] Mercader, I.; Batiste, O.; Ramírez-Piscina, L.; Ruiz, X.; Rüdiger, S.; Casademunt, J., Bifurcations and chaos in single-roll natural convection with low Prandtl number, Phys. Fluids, 17, 10, (2005) · Zbl 1188.76093 · doi:10.1063/1.2107907
[31] Mohamad, A. A.; Viskanta, R., Transient natural convection of low-Prandtl-number fluids in a differentially heated cavity, Intl J. Numer. Meth. Fluids, 13, 1, 61-81, (1991) · Zbl 0724.76082 · doi:10.1002/fld.1650130105
[32] Pimputkar, S. M.; Ostrach, S., Convective effects in crystals grown from melts, J. Cryst. Growth, 55, 614-646, (1981) · doi:10.1016/0022-0248(81)90121-4
[33] Puigjaner, D.; Herrero, J.; Simó, C.; Giralt, F., From steady solutions to chaotic flows in a Rayleigh-Bénard problem at moderate Rayleigh numbers, Physica D, 240, 11, 920-934, (2011) · Zbl 1225.37093
[34] Pulicani, J. P.; Arco, E. C. D.; Randriamampianina, A.; Bontoux, P.; Peyret, R., Spectral simulations of oscillatory convection at low Prandtl number, Intl J. Numer. Meth. Fluids, 10, 5, 481-517, (1990) · Zbl 0692.76077 · doi:10.1002/fld.1650100502
[35] Sánchez, J.; Net, M.; García-Archilla, B.; Simó, C., Newton-Krylov continuation of periodic orbits for Navier-Stokes flows, J. Comput. Phys., 201, 1, 13-33, (2004) · Zbl 1153.76345 · doi:10.1016/j.jcp.2004.04.018
[36] Seydel, R., Practical Bifurcation and Stability Analysis, (2010), Springer · Zbl 1195.34004 · doi:10.1007/978-1-4419-1740-9
[37] Torres, J. F.; Henry, D.; Komiya, A.; Maruyama, S., Bifurcation analysis of steady natural convection in a tilted cubical cavity with adiabatic sidewalls, J. Fluid Mech., 756, 650-688, (2014) · doi:10.1017/jfm.2014.448
[38] Torres, J. F.; Henry, D.; Komiya, A.; Maruyama, S.; Ben Hadid, H., Three-dimensional continuation study of convection in a tilted rectangular enclosure, Phys. Rev. E, 88, (2013)
[39] Wakitani, S., Numerical study of three-dimensional oscillatory natural convection at low Prandtl number in rectangular enclosures, Trans. ASME J. Heat Transfer, 123, 77-83, (2000) · doi:10.1115/1.1336508
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.