zbMATH — the first resource for mathematics

Numerical simulation of interaction during the top blow in a steel-making converter. (English) Zbl 1227.80047
Summary: The numerical modeling of interaction between oxygen high-pressure jets and a liquid – metal surface in a steel-making converter, where, under the force action of the jets, a cavern with a hydrodynamically unstable surface forms in the metal bulk, is studied. A simplified scheme of chemical reactions and mechanisms of metal-drop dispersing from the interface between the phases is proposed. This scheme permits an adequate description of the hydrodynamic flow pattern in the cavern. The modeling of a two-phase turbulent flow in the cavern is considered within the framework of the continuum model based on the averaged Navier – Stokes equations. To close the equations, a modified \(k - \varepsilon \) turbulence model is used, which takes into account the presence of the second phase. The flow structure in the cavern is studied. Practical recommendations for increasing the efficiency of the carbon-monoxide afterburning process in the cavern are given.
80A25 Combustion
80A32 Chemically reacting flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76J20 Supersonic flows
76H05 Transonic flows
76T10 Liquid-gas two-phase flows, bubbly flows
35Q30 Navier-Stokes equations
Full Text: DOI
[1] Baptizmanskii, V. I.; Okhotskii, V. B.: Physicochemical foundations of the oxygen-converter process, (1984)
[2] Chernyatevich, A. G.; Protopopov, E. V.: Elaboration of nozzle heads for two-contour lances of oxygen converters, Izvestiya vuzov, chernaya metallurgiya 12, 13-17 (1995)
[3] Pomerantsev, V. V.: Basics of the practical combustion theory, (1986)
[4] Shraiber, A. A.; Gavin, L. B.; Naumov, V. A.: Turbulent gas-suspension flows, (1987)
[5] Pourahmadi, F.; Humphrey, J. A. C.: Modelling solid – fluid turbulent flows with application to predicting erosive wear, Phys.-chem. Hydrodyn. 4, No. 3, 191-219 (1983)
[6] M. Kato, B.E. Launder, The modeling of turbulent flow around stationary and vibrating square cylinders, in: Proceedings of the 9th Symposium on Turbulent Shear Flow, Kyoto, Japan, 1993.
[7] Knowels, K.: Computational studies of impinging jets using k – &z.epsiv; turbulence models, Int. J. Numer. methods fluids 22, 799-810 (1996) · Zbl 0875.76435
[8] Mitchel, J. W.; Tarbell, J. M.: A kinetic model of nitric oxide formation during pulverized coal combustion, Alche J. 28, No. 2, 302-311 (1982)
[9] B.F. Magnussen, H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, in: Proceedings of the 16th International Symposium on Combustion, Pittsburgh, 1976, pp. 747 – 775. · Zbl 0404.76017
[10] Aiekseenko, S. V.; Nakonyakov, V. A.; Pokusaev, B. G.: Wave flow in liquid films, (1994)
[11] Gogonin, I. I.; Lazarev, S. I.: An experimental study of heat transfer and fluid dynamic during condensation of a steam flow over the surface of a horizontal cylinder, Inzh.-fiz. Zhurn. 58, No. 2, 181-188 (1990)
[12] H. Milosevic, Application of low-temperature plasma in steel-making converters, in: Proceedings of the Mathematical and Informational Technologies Conference, Kopaonik, Serbia, 2009, pp. 240 – 245.
[13] Udaykumar, H. S.; Shyy, W.; Rao, M. M.: ELAFINT: a mixed Eulerian – Lagrangian method for fluid flows with complex and moving boundaries, Int. J. Numer. methods fluids 22, 691-712 (1996) · Zbl 0887.76059 · doi:10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
[14] Ruivo, C. R.; Costa, J. J.; Figueiredo, A. R.: Numerical study of the influence of the atmospheric pressure on the heat and mass transfer rates of desiccant wheels, Int. J. Heat mass transfer 54, 1331-1339 (2011) · Zbl 1211.80025 · doi:10.1016/j.ijheatmasstransfer.2010.12.008
[15] Pigeonneau, F.: Mechanism of mass transfer between a bubble initially composed of oxygen and molten Glass, Int. J. Heat mass transfer 54, 1448-1455 (2011) · Zbl 1211.80024 · doi:10.1016/j.ijheatmasstransfer.2010.11.049
[16] Sankar, M.; Park, Youngyong; Lopez, J. M.; Do, Younghae: Numerical study of natural convection in a vertical porous annulus with discrete heating, Int. J. Heat mass transfer 54, 1493-1505 (2011) · Zbl 1211.80026 · doi:10.1016/j.ijheatmasstransfer.2010.11.043
[17] Hussam, W. K.; Thompson, M. C.; Sheard, G. J.: Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number, Int. J. Heat mass transfer 54, 1091-1100 (2011) · Zbl 1209.80011 · doi:10.1016/j.ijheatmasstransfer.2010.11.013
[18] Chander, S.; Ray, A.: Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface, Int. J. Heat mass transfer 54, 1179-1186 (2011) · Zbl 1210.80019 · doi:10.1016/j.ijheatmasstransfer.2010.10.035
[19] Kumar, R.; Saurav, S.; Titov, E. V.; Levin, D. A.; Long, R. F.; Neely, W. C.; Setlow, P.: Thermo-structural studies of spores subjected to high temperature gas environments, Int. J. Heat mass transfer 54, 755-765 (2011) · Zbl 1209.80016 · doi:10.1016/j.ijheatmasstransfer.2010.11.004
[20] Togun, H.; Salman, Y. K.; Aljibori, H. S. Sultan; Kazi, S. N.: An experimental study of heat transfer to turbulent separation fluid flow in an annular passage, Int. J. Heat mass transfer 54, 766-773 (2011) · Zbl 1209.80027 · doi:10.1016/j.ijheatmasstransfer.2010.10.031
[21] Abd-Elhady, M. S.; Zornek, T.; Malayeri, M. R.; Balestrino, S.; Szymkowicz, P. G.; Müller-Steinhagen, H.: Influence of gas velocity on particulate fouling of exhaust gas recirculation coolers, Int. J. Heat mass transfer 54, 838-846 (2011)
[22] Jovanovic, R.; Milewska, A.; Swiatkowski, B.; Goanta, A.; Spliethoff, H.: Numerical investigation of influence of homogeneous/heterogeneous ignition/combustion mechanisms on ignition point position during pulverized coal combustion in oxygen enriched and recycled flue gases atmosphere, Int. J. Heat mass transfer 54, 921-931 (2011) · Zbl 1209.80038 · doi:10.1016/j.ijheatmasstransfer.2010.10.011
[23] Chiu, Han-Chieh; Jang, Jer-Huan; Yeh, Hung-Wei; Wu, Ming-Shan: The heat transfer characteristics of liquid cooling heat sink containing microchannels, Int. J. Heat mass transfer 54, 34-42 (2011) · Zbl 1205.80016 · doi:10.1016/j.ijheatmasstransfer.2010.09.066
[24] Choo, K.; Kim, S. J.: Heat transfer and fluid flow characteristics of two-phase impinging jets, Int. J. Heat mass transfer 53, 5692-5699 (2010)
[25] Yang, Yue-Tzu; Lai, Feng-Hsiang: Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, Int. J. Heat mass transfer 53, 5895-5904 (2010) · Zbl 1201.80058 · doi:10.1016/j.ijheatmasstransfer.2010.07.045
[26] Steinboeck, A.; Wild, D.; Kiefer, T.; Kugi, A.: A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media, Int. J. Heat mass transfer 53, 5933-5946 (2010) · Zbl 1201.80051 · doi:10.1016/j.ijheatmasstransfer.2010.07.029
[27] Ghadimi, P.; Dashtimanesh, A.: Solution of 2D Navier – Stokes equation by coupled finite difference-dual reciprocity boundary element method, Appl. math. Model. 35, 2110-2121 (2011) · Zbl 1217.76026 · doi:10.1016/j.apm.2010.11.047
[28] Passalacqua, A.; Fox, R. O.: Advanced continuum modelling of gas-particle flows beyond the hydrodynamic limit, Appl. math. Model. 35, 1616-1627 (2011) · Zbl 1217.76078 · doi:10.1016/j.apm.2010.09.038
[29] Sohrabi, M. R.; Marjani, A.; Moradi, S.; Davallo, M.; Shirazian, S.: Mathematical modeling and numerical simulation of CO2 transport through hollow-fiber membranes, Appl. math. Model. 35, 174-188 (2011) · Zbl 1202.76151 · doi:10.1016/j.apm.2010.05.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.