×

Shape recognition and classification in electro-sensing. (English) Zbl 1355.92056

Summary: This paper aims at advancing the field of electro-sensing. It exhibits physical mechanisms underlying shape perception for weakly electric fish. These fish orient themselves at night in complete darkness by using their active electrolocation system. They generate a stable, relatively high-frequency, weak electric field and perceive the transdermal potential modulations caused by a nearby target with different electromagnetic properties than the surrounding water. The main result of this paper is a scheme that explains how weakly electric fish might identify and classify a target, knowing in advance that the latter belongs to a certain collection of shapes. The scheme is designed to recognize living biological organisms. It exploits the frequency dependence of the electromagnetic properties of living organisms, which comes from the capacitive effects generated by the cell membrane structure. When measurements are taken at multiple frequencies, the fish might use the spectral content of the perceived transdermal potential modulations to classify the living target.

MSC:

92C55 Biomedical imaging and signal processing
68T10 Pattern recognition, speech recognition

Software:

SIES
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] LISSMANN, Journal of Experimental Biology 35 (2) pp 451– (1958)
[2] Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 144 pp 465– (1981) · doi:10.1007/BF01326832
[3] Babineau, Journal of Experimental Biology 209 (18) pp 3636– (2006) · doi:10.1242/jeb.02403
[4] Budelli, Journal of Experimental Biology 203 (3) pp 481– (2000)
[5] Chen, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 191 (4) pp 331– (2005) · doi:10.1007/s00359-004-0587-3
[6] MacIver, Journal of Experimental Biology 204 (3) pp 543– (2001)
[7] Hill, Science 260 (5114) pp 1617– (1993) · doi:10.1126/science.260.5114.1617
[8] von der Emde, Journal of Experimental Biology 210 (17) pp 3082– (2007) · doi:10.1242/jeb.005694
[9] von der Emde, Journal of Experimental Biology 202 (10) pp 1205– (1999)
[10] Journal of The Royal Society Interface 8 (60) pp 1041– (2011) · doi:10.1098/rsif.2010.0493
[11] Journal of The Royal Society Interface 6 (34) pp 417– (2009) · doi:10.1098/rsif.2008.0286
[12] INT J ROBOT RES 27 pp 529– (2008) · Zbl 05744861 · doi:10.1177/0278364908090538
[13] 52 pp 492– (2012)
[14] SIAM J IMAG SCI 6 pp 258– (2013)
[15] SIAM J APPL MATH 65 pp 252– (2004) · Zbl 1075.35102 · doi:10.1137/S003613990343375X
[16] SIAM J APPL MATH 69 pp 22– (2008) · Zbl 1156.35102 · doi:10.1137/070683593
[17] Scholz, IEEE transactions on medical imaging 21 (6) pp 588– (2002) · doi:10.1109/TMI.2002.800609
[18] FOUND COMPUT MATH 14 pp 27– (2014) · Zbl 1294.94006 · doi:10.1007/s10208-013-9168-6
[19] Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 178 pp 397– (1996)
[20] von der Emde, Journal of physiology, Paris 98 (1-3) pp 67– (2004) · doi:10.1016/j.jphysparis.2004.03.013
[21] SIAM J MATH ANAL 34 pp 1152– (2003) · Zbl 1036.35050 · doi:10.1137/S0036141001399234
[22] NUMER MATH 26 pp 199– (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.