×

Green’s function and surface waves in a viscoelastic orthotropic FGM enforced by an impulsive point source. (English) Zbl 1508.86006

Summary: Analytical and numerical approach are taken into consideration to analyze the propagation behavior of horizontally polarized shear surface waves (SH-wave) influenced by an impulsive point source in pre-stressed heterogeneous Voigt-type viscoelastic orthotropic functionally graded (FGM) layered structure. The mechanical properties of the material of viscoelastic functionally graded layer vary with respect to a certain depth as a hyperbolic function, while it varies as a quadratic function for the viscoelastic functionally graded half-space. The complex wave velocity of SH-wave has been achieved by the method of Green’s function and Fourier transformation under the appropriate boundary conditions of the adopted model. The derived wave velocity of SH-waves has been reduced to the classical equation of Love wave when both the viscoelastic orthotropic FGM layer and half-space are considered to be homogeneous isotropic elastic, as depicted in the section of particular cases and validation. Moreover, numerical computation of the obtained velocity equation has been performed and the substantial effects of viscoelasticity and heterogeneity on phase velocity as well as attenuation coefficient for both the cases of absence and presence of initial stress in the media have been perceived by the means of graphs. The final results of this work may be relevant to understand the useful information of SH-wave propagation in the considered layered structure.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
74J15 Surface waves in solid mechanics
74L05 Geophysical solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ewing, W. M.; Jardetzky, W. S.; Press, F., Elastic Waves in Layered Media (1957), McGraw-Hill: McGraw-Hill New York · Zbl 0083.23705
[2] Love, A. E.H., Mathematical Theory of Elasticity (1920), Cambridge University Press: Cambridge University Press Cambridge · JFM 47.0750.09
[3] Gubbins, D., Seismology and Plate Tectonics (1990), Cambridge University Press: Cambridge University Press Cambridge
[4] Pujol, J., Elastic Wave Propagation and Generation in Seismology (2003), Cambridge University Press: Cambridge University Press Cambridge
[5] Vinh, P. C.; Anh, V. T.N.; Thanh, V. P., Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact, Wave Motion, 51, 3, 496-504 (2014) · Zbl 1456.74083
[6] Gourgiotis, P. A.; Georgiadis, H. G., Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterized by the toupin mindlin gradient theory, Int. J. Solids Struct., 62, 217-228 (2015)
[7] Dutta, S., Love waves in a non-homogeneous internal stratum lying between two isotropic media, Geophysics, 28, 156-160 (1963)
[8] Singh, B., Wave propagation in an initially stressed transversely isotropic thermoelastic solid half-space, Appl. Math. Comput., 217, 2, 705-715 (2010) · Zbl 1426.74122
[9] Zhu, H.; Zhang, L.; Han, J.; Zhang, Y., Love wave in an isotropic homogeneous elastic half-space with a functionally graded cap layer, Appl. Math. Comput., 231, 93-99 (2014) · Zbl 1410.74032
[10] Pang, Y.; Liu, J. X.; Wang, Y. S.; Zhao, X. F., Propagation of rayleigh-type surface waves in a transversely isotropic piezoelectric layer over a piezomagnetic half-space, J. Appl. Phys., 103, 074901 (2008)
[11] Destrade, M., Surface waves in orthotropic incompressible materials, J. Acoust. Soc. Am., 110, 2, 837-840 (2001)
[12] Abd-Alla, A. M.; Ahmed, S. M., Propagation of love waves in a non-homogeneous orthotropic elastic layer under initial stress overlying semi-infinite medium, Appl. Math. Comput., 106, 2-3, 265-275 (1999) · Zbl 1049.74642
[13] Wilson, J. T., Surface waves in a heterogeneous medium, Bull. Seismol. Soc. Am., 32, 4, 297-304 (1942) · Zbl 0063.08275
[14] Dey, S.; Gupta, A. K.; Gupta, S., Torsional surface waves in non-homogeneous and anisotropic medium., J. Acoust. Soc. Am., 99, 5, 2737-2741 (1996)
[15] Biot, M. A., The influence of initial stress on elastic waves, J. Appl. Phys., 11, 8, 522-530 (1940) · JFM 66.1022.02
[16] Saha, A.; Kundu, S.; Gupta, S.; Vaishnav, P. K., Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space, J. Earth Syst. Sci., 125, 4, 885-895 (2016)
[17] Kundu, S.; Gupta, S.; Manna, S., Propagation of g-type seismic waves in heterogeneous layer lying over an initially stressed heterogeneous half-space, Appl. Math. Comput., 234, 1-12 (2014) · Zbl 1298.86006
[18] Ke, L. L.; Wang, Y. S.; Zhang, Z. M., Love waves in an inhomogeneous fluid saturated porous layered half-space with linearly varying properties, Soil Dyn. Earthq. Eng., 26, 6-7, 574-581 (2006)
[19] Ke, L. L.; Wang, Y. S.; Zhang, Z. M., Propagation of love waves in an inhomogeneous fluid saturated porous layered half-space with properties varying exponentially, J. Eng. Mech., 131, 12, 1322-1328 (2005)
[20] Wang, C. D.; Chou, H. T.; Peng, D. H., Love-wave propagation in an inhomogeneous orthotropic medium obeying the exponential and generalized power law models, Int. J. Geomech., 17, 7, 4017003 (2017)
[21] Abd-Alla, A. M.; Hammad, H. A.H.; Abo-Dahab, S. M., Rayleigh waves in a magnetoelastic half-space of orthotropic material under influence of initial stress and gravity field, Appl. Math. Comput., 154, 2, 583-597 (2004) · Zbl 1078.74018
[22] Carcione, J. M., Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields, Geophys. J. Int., 101, 739-750 (1990) · Zbl 0701.73015
[23] Borcherdt, R., Rayleigh-type surface wave on a linear viscoelastic half-space., J. Acoust. Soc. Am., 54, 6, 1651-1653 (1973) · Zbl 0275.73021
[24] Carcione, J. M., Rayleigh waves in isotropic viscoelastic media, Geophys. J. Int., 108, 2, 453-464 (1992)
[25] Maity, M.; Kundu, S.; Pandit, D. K.; Gupta, S., Characteristics of torsional wave profiles in a viscous fiber-reinforced layer resting over a sandy half-space under gravity, Int. J. Geomech., 18, 7, 6018015 (2018)
[26] Kong, Y.; Liu, J.; Nie, G., Propagation characteristics of SH waves in a functionally graded piezomagnetic layer on PMN-0.29 PT single crystal substrate, Mech. Res. Commun., 73, 107-112 (2016)
[27] Paulino, G. H.; Jin, Z. H., Correspondence principle in viscoelastic functionally graded materials, J. Appl. Mech., 68, 1, 129-132 (2001) · Zbl 1110.74623
[28] Yu, J.; Zhang, C., Effects of initial stress on guided waves in orthotropic functionally graded plates, Appl. Math. Model., 38, 2, 464-478 (2014) · Zbl 1449.74120
[29] Qian, Z. H.; Jin, F.; Kishimoto, K.; Lu, T., Propagation behavior of love waves in a functionally graded half-space with initial stress, Int. J. Solids Struct., 46, 6, 1354-1361 (2009) · Zbl 1236.74134
[30] Yu, J. G.; Ratolojanahary, F. E.; Lefebvre, J. E., Guided waves in functionally graded viscoelastic plates, Compos. Struct., 93, 11, 2671-2677 (2011)
[31] Ren, D.; Shen, X.; Li, C.; Cao, X., The fractional kelvin-voigt model for rayleigh surface waves in viscoelastic FGM infinite half space, Mech. Res. Commun., 87, 53-58 (2018)
[32] Li, X. Y.; Wang, Z. K.; Huang, S. H., Love waves in functionally graded piezoelectric materials, Int. J. Solids Struct., 41, 26, 7309-7328 (2004) · Zbl 1124.74311
[33] Qian, Z. H.; Jin, F.; Hirose, S., Piezoelectric love waves in an FGPM layered structure, Mech. Adv. Mater. Struct., 18, 1, 77-84 (2011)
[34] Liu, J.; Wang, Z. K., The propagation behavior of love waves in a functionally graded layered piezoelectric structure, Smart Mater. Struct., 14, 1, 137 (2004)
[35] Assari, P.; Dehghan, M., A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions, Appl. Math. Comput., 315, 424-444 (2017) · Zbl 1426.65206
[36] Assari, P.; Dehghan, M., A meshless galerkin scheme for the approximate solution of nonlinear logarithmic boundary integral equations utilizing radial basis functions, J. Comput. Appl. Math., 333, 362-381 (2018) · Zbl 1380.65395
[37] Assari, P.; Dehghan, M., Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace’s equations with nonlinear boundary conditions, Int. J. Comput. Math., 96, 1, 170-198 (2019) · Zbl 1499.65706
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.