×

zbMATH — the first resource for mathematics

Gluing and grazing bifurcations in periodically forced 2-dimensional integrate-and-fire models. (English) Zbl 07264680
Summary: In this work we consider a general class of 2-dimensional hybrid systems. Assuming that the system possesses an attracting equilibrium point, we show that, when periodically driven with a square-wave pulse, the system possesses a periodic orbit which may undergo smooth and nonsmooth grazing bifurcations. We perform a semi-rigorous study of the existence of periodic orbits for a particular model consisting of a leaky integrate-and-fire model with a dynamic threshold. We use the stroboscopic map, which in this context is a 2-dimensional piecewise-smooth discontinuous map. For some parameter values we are able to show that the map is a quasi-contraction possessing a (locally) unique maximin periodic orbit. We complement our analysis using advanced numerical techniques to provide a complete portrait of the dynamics as parameters are varied. We find that for some regions of the parameter space the model undergoes a cascade of gluing bifurcations, while for others the model shows multistability between orbits of different periods.
MSC:
37J Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Izhikevich, E., Dynamical systems in neuroscience: the geometry of excitability and bursting. Computational Neuroscience (2007), MIT Press: MIT Press Cambridge, MA
[2] Izhikevich, E., Simple model of spiking neurons, IEEE Trans Neural Networks, 14, 6, 1569-1572 (2003)
[3] Brette, R.; Gerstner, W., Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J Neurophysiol, 94, 3637-3642 (2005)
[4] Platkiewicz, J.; Brette, R., A threshold equation for action potential initiation, PLoS Comput Biol, 6, 7, e1000850 (2010)
[5] Higgs, M.; Spain, W., Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones, J Physiol (Lond), 589, 5125-5142 (2011)
[6] Meng, X.; Huguet, G.; Rinzel, J., Type III excitability, slope sensitivity and coincidence detection, Disc Cont Dyn Syst, 32, 2720-2757 (2012) · Zbl 1241.92013
[7] Huguet, G.; Meng, X.; Rinzel, J., Phasic firing and coincidence detection by subthreshold negative feedback: divisive or subtractive or, better, both, Front Comput Neurosci, 11, 3 (2017)
[8] Makarenkov, O.; Lamb, J., Dynamics and bifurcations of nonsmooth systems: a survey., Physica D, 241, 1826-1844 (2012)
[9] Bernardo, M.d.; Budd, C. J.; Champneys, A. R.; Kowalczyk, P., Piecewise-smooth dynamical systems: theory and applications, Applied Mathematical Sciences, 26 (2008), Springer · Zbl 1146.37003
[10] Touboul, J.; Brette, R., Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J Appl Dyn Syst, 8, 4, 1462-1506 (2009) · Zbl 1204.37019
[11] Rubin, J.; Signerska-Rynkowska, J.; Touboul, J.; Vidal, A., Wild oscillations in a nonlinear neuron model with resets: (II) mixed-mode oscillations, Discrete Contin Dyn Syst Ser B, 22, 10, 4003-4039 (2017) · Zbl 1375.34075
[12] Rubin, J.; Signerska-Rynkowska; Touboul, J.; Vidal, A., Wild oscillations in a nonlinear neuron model with resets: (i) bursting, spike-adding and chaos, Discrete Contin Dyn Syst Ser B, 22, 10, 3967-4002 (2017) · Zbl 1371.37032
[13] Coombes, S.; Thul, R.; Wedgwood, K., Nonsmooth dynamics in spiking neuron models, Physica D, 241, 22, 2042-2057 (2012)
[14] Keener, J.; Hoppensteadt, F.; Rinzel, J., Integrate-and-fire models of nerve membrane response to oscillatory input, SIAM J Appl Dyn Syst (SIADS), 41, 503-517 (1981) · Zbl 0491.92009
[15] Tiesinga, P.; Fellous, J. M.; Sejnowski, T., Spike-time reliability of periodically driven integrate-and-fire neurons, Neurocomputing, 44, 195-200 (2002) · Zbl 1007.68837
[16] Granados, A.; Krupa, M.; Clément, F., Border collision bifurcations of stroboscopic maps in periodically driven spiking models, SIAM J Appl Dyn Syst, 13, 4, 1387-1416 (2014) · Zbl 1322.37016
[17] Granados, A.; Krupa, M., Firing-rate, symbolic dynamics and frequency dependence in periodically driven spiking models: a piecewise-smooth approach, Nonlinearity, 28, 1163-1192 (2015) · Zbl 1356.37068
[18] Geller, W.; Misiurevicz, M., Farey-lorenz permutations for interval maps, Int J Bifurcation Chaos, 28, 1-10 (2018)
[19] Granados, A.; Alsedà, L.; Krupa, M., The period adding and incrementing bifurcations: from rotation theory to applications, SIAM Rev, 56, 2, 225-292 (2017) · Zbl 1366.37097
[20] Ermentrout, B.; Terman, D., Mathematical foundations of neuroscience. (2010), Springer: Springer New York · Zbl 1320.92002
[21] Alsedà, L.; Llibre, J.; Misiurevicz, M., Combinatorial dynamics and entropy in dimension one (2000), World Scientific
[22] Gambaudo, J. M.; Tresser, C., Dynamique régulière ou chaotique. applications du cercle ou de l’intervalle ayant une discontinuité., C R Acad Sc Paris, série I, 300, 311-313 (1985) · Zbl 0595.58031
[23] Gambaudo, J. M.; Glendinning, P.; Tresser, C., Collage de cycles et suites de farey, C R Acad Sc Paris, série I, 299, 711-714 (1984) · Zbl 0591.58023
[24] Gambaudo, J. M.; Glendinning, P.; Tresser, C., The gluing bifurcation: symbolic dynamics of the closed curves, Nonlinearity, 1, 203-214 (1988) · Zbl 0656.58023
[25] Bogoliubov, N.; Mitropolski, Y., Asymptotic methods in the theory of non-linear oscillations (1961), Gordon and Breach
[26] Nordmark, A. B., Universal limit mapping in grazing bifurcations, Phys Rev E, 55, 1, 266-270 (1997)
[27] Bernardo, M.d.; Budd, C. J.; Champneys, A. R., Normal form maps for grazing bifurcations in \(n\)-dimensional piecewise-smooth dynamical systems, Physica D, 160, 3-4, 222-254 (2001) · Zbl 1067.37063
[28] Nusse, H. E.; Ott, E.; Yorke, J. A., Border-collision bifurcations: an explanation for observed bifurcation phenomena, Phys Rev E, 49, 1073-1076 (1994)
[29] Gambaudo, J. M.; Tresser, C., On the dynamics of quasi-contractions, BOL SOC BRAS MAT, 19, 61-114 (1988) · Zbl 0717.54022
[30] Glendinning, P.; Kowalczyk, P.; Nordmark, A., Attractors near grazing-sliding bifurcations, Nonlinearity, 25, 1867-1885 (2012) · Zbl 1246.34019
[31] Rinzel, J.; Huguet, G., Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection, Commun Pure Appl Math, 66, 9, 1464-1494 (2013) · Zbl 1402.92111
[32] Wilson, D.; Moehlis, J., Clustered desynchronization from high-frequency deep brain stimulation, PLoS Comput Biol, 11, 12, 1-26 (2016)
[33] Donde, V.; Hiskens, I., Grazing bifurcations in periodic hybrid systems, Proceedings of the 2004 International Symposium on Circuits and Systems, 4, 697-700 (2004)
[34] Dankowicz, H.; Nordmark, A. B., On the origin and bifurcations of stick-slip oscillations, Physica D, 136, 3-4, 280-302 (2000) · Zbl 0963.70016
[35] Dankowicz, H.; Zhao, X., Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators, Physica D, 202, 238-257 (2005) · Zbl 1083.34032
[36] Nordmark, A. B., Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14, 6, 1517 (2001) · Zbl 1001.70020
[37] Nordmark, A.; Kowalczyk, P., A codimension-two scenario of sliding solutions in grazing-sliding bifurcations, Nonlinearity, 19, 1-26 (2006) · Zbl 1102.37034
[38] Simpson, D., Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form, Int J Bifurcation and Chaos, 24, 1-23 (2014)
[39] Simpson, D., The structure of mode-locking regions of piecewise-linear continuous maps: i. nearby mode-locking regions and shrinking points, Nonlinearity, 30, 382-444 (2017) · Zbl 1395.37034
[40] Simpson, D., The structure of mode-locking regions of piecewise-linear continuous maps: ii. skew sawtooth maps, Nonlinearity, 31, 1905-1939 (2018) · Zbl 1441.37055
[41] Zhao, X.; Dankowicz, H., Unfolding degenerate grazing dynamics in impact actuators, Nonlinearity, 19, 399-418 (2006) · Zbl 1134.70318
[42] Thota, P.; Dankowicz, H., Continuous and discontinuous grazing bifurcations in impacting oscillators, Physica D, 214, 187-197 (2006) · Zbl 1100.34032
[43] Kowalczyk, P., Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps, Nonlinearity, 18, 2, 485 (2005) · Zbl 1067.37064
[45] Jimenez, N.; Mihalas, S.; Brown, R.; Niebur, E.; Rubin, J., Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J Appl Dyn Syst (SIADS), 12, 1474-1514 (2013) · Zbl 1284.37030
[46] Kasprzak, P.; Nawrocki, A.; Signerska-Rynkowska, J., Integrate-and-fire models with an almost periodic input function, J Diff Eqs, 264, 4, 2495-2537 (2017) · Zbl 1380.42006
[47] Aizerman, M.; Gantmakher, F., On the stability of periodic motions, J Appl Math Mech, 22, 6, 1065-1078 (1958) · Zbl 0086.29102
[48] Leine, R.; Nijmeijer, H., Dynamics and bifurcations of non-smooth mechanical systems, Lecture Notes in Applied and Computations Mechanics, 18 (2004), Springer · Zbl 1068.70003
[49] Allgower, E.; Georg, K., Introduction to numerical continuation methods, 45 of classics in applied mathematics (2003), SIAM
[50] Gambaudo, J. M.; Lanford, O.; Tresser, C., Dynamique symbolique des rotations, C R Acad Sc Paris, série I, 299, 823-826 (1984) · Zbl 0569.58010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.