zbMATH — the first resource for mathematics

The period adding and incrementing bifurcations: from rotation theory to applications. (English) Zbl 1366.37097

37E10 Dynamical systems involving maps of the circle
37E05 Dynamical systems involving maps of the interval (piecewise continuous, continuous, smooth)
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37N25 Dynamical systems in biology
37N35 Dynamical systems in control
Full Text: DOI
[1] Ll. Alsedà and A. Falcó, On the topological dynamics and phase-locking renormalization of Lorenz-like maps, Ann. Inst. Fourier (Grenoble), 53 (2003), pp. 859–883.
[2] Ll. Alsedà and J. Llibre, Kneading theory of Lorenz maps, in Dynamical Systems and Ergodic Theory, Banach Center Publ. 23, PWN, Warsaw, 1989, pp. 83–89.
[3] Ll. Alsedà, J. Llibre, and M. Misiurevicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific, Singapore, 2000.
[4] Ll. Alsedà, J. Llibre, M. Misiurewicz, and C. Tresser, Periods and entropy for Lorenz-like maps, Ann. Inst. Fourier (Grenoble), 39 (1989), pp. 929–952. · Zbl 0678.34047
[5] Ll. Alsedà and F. Man͂osas, Kneading theory and rotation intervals for a class of circle maps of degree one, Nonlinearity, 3 (1990), pp. 413–452.
[6] Ll. Alsedà and F. Man͂osas, Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comenianae, 65 (1996), pp. 11–22. · Zbl 0863.34046
[7] A. Amador, S. Casanova, H. A. Granada, G. Olivar, and J. Hurtado, Codimension-two big-bang bifurcation in a ZAD-controlled boost DC-DC converter, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1450150. · Zbl 1305.34067
[8] F. Angulo, E. Fossas, and G. Olivar, Transition from periodicity to chaos in a PWM-controlled buck converter with ZAD strategy, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), pp. 3245–3264.
[9] F. Angulo, G. Olivar, and M. di Bernardo, Two-parameter discontinuity-induced bifurcation curves in a ZAD-strategy-controlled DC-DC buck converter, IEEE Trans. Circuits Syst. I, 55 (2008), pp. 2392–2401.
[10] F. Angulo, G. Olivar, and A. Taborda, Continuation of periodic orbits in a ZAD-strategy controlled buck converter, Chaos Solitons Fractals, 38 (2008), pp. 348–363. · Zbl 1146.93316
[11] A. Arneodo, P. Coullet, and C. Tresser, A possible new mechanism for the onset of turbulence, Phys. Lett., 81 (1981), pp. 197–201.
[12] V. Avrutin, B. Eckstein, and M. Schanz, The bandcount increment scenario. I: Basic structures, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), pp. 1867–1883. · Zbl 1159.34031
[13] V. Avrutin, B. Eckstein, and M. Schanz, The bandcount increment scenario. II: Interior structures, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), pp. 2247–2263. · Zbl 1186.37061
[14] V. Avrutin, B. Eckstein, and M. Schanz, The bandcount increment scenario. III: Deformed structures, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 41–57. · Zbl 1186.34053
[15] V. Avrutin, B. Eckstein, M. Schanz, and B. Schenke, Bandcount incrementing scenario revisited and floating regions within robust chaos, Math. Comput. Simulation, 95 (2014), pp. 23–38.
[16] V. Avrutin, E. Fossas, A. Granados, and M. Schanz, Virtual orbits and two-parameter bifurcation analysis in ZAD-controlled buck-converter, Nonlinear Dynam., 63 (2011), pp. 19–33. · Zbl 1215.93110
[17] V. Avrutin, B. Futter, and M. Schanz, The discontinuous flat top tent map and the nested period incrementing bifurcation structure, Chaos Solitons Fractals, 45 (2012), pp. 465–482. · Zbl 1297.37018
[18] V. Avrutin, A. Granados, and M. Schanz, Sufficient conditions for a period increment big bang bifurcation in one-dimensional maps, Nonlinearity, 24 (2011), pp. 2575–2598. · Zbl 1234.37031
[19] V. Avrutin, E. Mosekilde, Z. T. Zhusubaliyev, and L. Gardini, Onset of chaos in a single-phase power electronic inverter, Chaos, 25 (2015), p. 043114.
[20] V. Avrutin and M. Schanz, Border-collision period-doubling scenario, Phys. Rev. E, 70 (2004), 026222.
[21] V. Avrutin and M. Schanz, Period doubling scenario without flip bifurcations in a one-dimensional map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), pp. 1267–1284. · Zbl 1082.37034
[22] V. Avrutin and M. Schanz, On multi-parametric bifurcations in a scalar piecewise-linear map, Nonlinearity, 19 (2006), pp. 531–552. · Zbl 1087.37027
[23] V. Avrutin, M. Schanz, and S. Banerjee, Multi-parametric bifurcations in a piecewise-linear discontinuous map, Nonlinearity, 19 (2006), pp. 1875–1906. · Zbl 1190.37042
[24] V. Avrutin, M. Schanz, and S. Banerjee, Codimension-3 bifurcations: Explanation of the complex 1-, 2- and 3D bifurcation structures in nonsmooth maps, Phys. Rev. E, 75 (2007), 066205.
[25] V. Avrutin, M. Schanz, and L. Gardini, Calculation of bifurcation curves by map replacement, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), pp. 3105–3135. · Zbl 1204.37037
[26] V. Avrutin, M. Schanz, and L. Gardini, Self-similarity of the bandcount adding structures: Calculation by map replacement, Regul. Chaotic Dyn., 15 (2010), pp. 685–703. · Zbl 1209.37044
[27] V. Avrutin, M. Schanz, and B. Schenke, On a bifurcation structure mimicking period adding, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), pp. 1503–1518. · Zbl 1219.37064
[28] V. Avrutin and I. Sushko, A gallery of bifurcation scenarios in piecewise smooth 1D maps, in Global Analysis of Dynamic Models in Economics, Finance and the Social Sciences, G.-I. Bischi, C. Chiarella, and I. Sushko, eds., Springer, New York, 2013, pp. 269–395. · Zbl 1296.37041
[29] S. Banerjee and C. Grebogi, Border collision bifurcation in two-dimensional piecewise smooth maps, Phys. Rev. E, 59 (1999), pp. 4052–4061.
[30] S. Banerjee, M. S. Karthik, G. Yuan, and J. A. Yorke, Bifurcations in one-dimensional piecewise smooth maps—theory and applications in switching circuits, IEEE Trans. Circuits Syst. I Regul. Pap., 47 (2000), pp. 389–394. · Zbl 0968.37013
[31] S. Banerjee and G. C. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press, Piscataway, NJ, 2001.
[32] C. Bernhardt, Rotation intervals of a class of endomorphisms of the circle, Proc. London Math. Soc. (3), 45 (1982), pp. 258–280. · Zbl 0458.58020
[33] F. Bizzarri, M. Storace, and L. Gardini, Bifurcation analysis of a circuit-related generalization of the shipmap, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), pp. 2435–2452. · Zbl 1192.37050
[34] C. Boyd, On the structure of family of cherry fields on the torus, Ergodic Theory Dynam. Systems, 5 (1985), pp. 27–46. · Zbl 0578.58032
[35] R. Brette, Dynamics of one-dimensional spiking neuron model, J. Math. Biol., 48 (2004), pp. 38–56. · Zbl 1050.92007
[36] H. Broer, C. Simó, and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), pp. 667–770. · Zbl 0937.37013
[37] B. Brogliato, Nonsmooth Mechanics, Springer, London, 1999.
[38] V. Carmona, S. Fernández-García, F. Fernández-Sánchez, E. García-Medina, and A. Teruel, Noose bifurcation and crossing tangency in reversible piecewise linear systems, Nonlinearity, 27 (2014), pp. 585–606. · Zbl 1296.34094
[39] V. Carmona, S. Ferndández-García, F. Fernández-Sánchez, E. García-Medina, and A. E. Teruel, Reversible periodic orbits in a class of 3D continuous piecewise linear systems of differential equations, Nonlinear Anal., 75 (2012), pp. 5866–5883.
[40] P. C. Coullet, J.-M. Gambaudo, and C. Tresser, Une nouvelle bifurcation de codimension 2: Le colage de cycles, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), pp. 253–256. · Zbl 0582.58026
[41] M. Desroches, J. Guckenhiemer, B. Krauskopf, C. Kuehn, H. M. Osinga, and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Rev., 54 (2012), pp. 211–288, . · Zbl 1250.34001
[42] R. L. Devaney, A piecewise linear model for the zones of instability of an area preserving map, Phys. D, 10 (1984), pp. 387–393. · Zbl 0588.58009
[43] M. di Bernardo, C. J. Budd, and A. R. Champneys, Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the DC/DC buck converter, Nonlinearity, 11 (1998), pp. 858–890. · Zbl 0904.34034
[44] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. 163, Springer, New York, 2008. · Zbl 1146.37003
[45] M. di Bernardo, F. Garofalo, L. Glielmo, and F. Vasca, Switchings, bifurcations and chaos in DC/DC converters, Fundam. Theory Appl., 45 (1998), pp. 133–141.
[46] M. di Bernardo, F. Garofalo, L. Iannelli, and F. Vasca, Bifurcations in piecewise-smooth feedback systems, Internat. J. Control, 75 (2002), pp. 1243–1259. · Zbl 1030.93020
[47] M. di Bernardo, P. Kowalczyk, and A. Nordmark, Sliding Bifurcations: A Novel Mechanism for the Sudden Onset of Chaos in Dry-Friction Oscillators, Preprint 2003.16, Bristol Centre for Applied Nonlinear Mathematics, Bristol, UK, 2003. · Zbl 1099.70504
[48] P. Dutta, B. Routroy, S. Banerjee, and S. Alam, On the existence of low-period orbits in n-dimensional piecewise linear discontinuous maps, Nonlinear Dynam., 53 (2008), pp. 369–380. · Zbl 1170.70351
[49] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Math. Appl. (Soviet Ser.) 18, Kluwer Academic, Dordrecht, 1988.
[50] E. Fossas and A. Granados, Big bang bifurcations in a first order systems with a relay, in Proceedings of the 11th Conference on Dynamical Systems Theory and Applications, P. Olejnik J. Mrozowski. J. Awrejcewicz, and M. Kaźmierczak, eds., 2011, pp. 147–152.
[51] E. Fossas and A. Granados, Occurrence of big bang bifurcations in discretized sliding-mode control systems, Diff. Equ. Dyn. Syst., 21 (2013), pp. 35–43, . · Zbl 1277.37108
[52] E. Fossas, R. Grin͂ó, and D. Biel, Quasi-sliding control based on pulse width modulation, zero averaged dynamics and the \(L_2\) norm, in Advances in Variable Structure Systems: Analysis, Integration and Applications, World Scientific, Singapore, 2001, pp. 335–344.
[53] E. Fossas, S. J. Hogan, and T. M. Seara, Two-parameter bifurcation curves in power electronic converters, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), pp. 341–357.
[54] D. Fournier-Prunaret, P. Chargé, and L. Gardini, Border collision bifurcations and chaotic sets in a two-dimensional piecewise linear map, Commun. Nonlinear Sci. Numer. Simul., 16 (2010), pp. 916–927. · Zbl 1221.37093
[55] A. M. Fox and J. D. Meiss, Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps, Phys. D, 243 (2013), pp. 45–63. · Zbl 1259.37036
[56] E. Freire, E. Ponce, and J. Ros, The focus-center-limit cycle bifurcation in symmetric 3D piecewise linear systems, SIAM J. Appl. Math, 65 (2005), pp. 1933–1951, . · Zbl 1080.37057
[57] J. G. Freire and J. A. C. Gallas, Stern-Brocot trees in the periodicity of mixed-mode oscillations, Phys. Chem. Chem. Phys., 13 (2011), pp. 12191–12198.
[58] Z. Galias and X. Yu, Study of periodic solutions of discretized two-dimensional sliding mode control systems, IEEE Trans. Circuits Systems II Express Briefs, 58 (2011), pp. 381–385.
[59] J.-M. Gambaudo, Ordre, désordre, et frontiére des systèmes Morse-Smale, Ph.D. thesis, Université de Nice, France, 1987.
[60] J.-M. Gambaudo, P. Glendinning, and C. Tresser, The gluing bifurcation: Symbolic dynamics of the closed curves, Nonlinearity, 1 (1988), pp. 203–214. · Zbl 0656.58023
[61] J.-M. Gambaudo, O. E. Lanford III, and C. Tresser, Dynamique symbolique des rotations, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), pp. 823–826. · Zbl 0569.58010
[62] J.-M. Gambaudo, I. Procaccia, S. Thomae, and C. Tresser, New universal scenarios for the onset of chaos in Lorenz-type flows, Phys. Rev. Lett, 57 (1986), pp. 925–928.
[63] J.-M. Gambaudo and C. Tresser, On the dynamics of quasi-contractions, Bol. Soc. Brasil. Mat., 19 (1988), pp. 61–114. · Zbl 0717.54022
[64] L. Gardini, V. Avrutin, and I. Sushko, Codimension-2 border collision, bifurcations in one-dimensional, discontinuous piecewise smooth maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1450024. · Zbl 1287.37023
[65] L. Gardini and F. Tramontana, Border collision bifurcations in 1D PWL map with one discontinuity and negative jump. Use of the first return map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), pp. 3529–3547. · Zbl 1208.37026
[66] R. Ghrist and P. J. Holmes, Knotting within the gluing bifurcation, in IUTAM Symposium on Nonlinearity and Chaos in the Engineering Dynamics, J. Thompson and S. Bishop, eds., John Wiley, New York, 1994, pp. 299–315. · Zbl 0864.58045
[67] D. Giaouris, S. Banerjee, O. Imrayed, K. Mandal, B. Zahawi, and V. Pickert, Complex interaction between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost converter, IEEE Trans. Circuits Syst. I, 59 (2012), pp. 207–214.
[68] P. Glendinning, Topological conjugation of Lorenz maps to \(β\)-transformations, Math. Proc. Cambridge Philos. Soc., 107 (1990), pp. 401–413. · Zbl 0705.58035
[69] P. Glendinning, Milnor attractors and topological attractors of a piecewise linear map, Nonlinearity, 14 (2001), pp. 239–257. · Zbl 0992.37046
[70] P. Glendinning and C. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, in Proceedings of a NATO Advanced Research Workshop held at the Centre for Nonlinear Phenomena and Complex Systems on Homoclinic Chaos, Elsevier North-Holland, Amsterdam, The Netherlands, 1993, pp. 22–50. · Zbl 0783.58046
[71] A. Granados, S. J. Hogan, and T. M. Seara, The Melnikov method and subharmonic orbits in a piecewise-smooth system, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 801–830, . · Zbl 1262.37028
[72] A. Granados, S. J. Hogan, and T. M. Seara, The scattering map in two coupled piecewise-smooth systems, with numerical application to rocking blocks, Phys. D, 269 (2014), pp. 1–20. · Zbl 1286.37060
[73] A. Granados and M. Krupa, Firing-rate, symbolic dynamics and frequency dependence in periodically driven spiking models: A piecewise-smooth approach, Nonlinearity, 28 (2015), pp. 1163–1192. · Zbl 1356.37068
[74] A. Granados, M. Krupa, and F. Clément, Border collision bifurcations of stroboscopic maps in periodically driven spiking models, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1387–1416, . · Zbl 1322.37016
[75] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), pp. 59–72. · Zbl 0436.58018
[76] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, Modeling of chaotic DC–DC converters by iterated nonlinear mappings, IEEE Trans. Power Electron., 7 (1992), pp. 25–36.
[77] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford University Press, London, 1960. · Zbl 0086.25803
[78] S. J. Hogan, L. Higham, and T. C. L. Griffin, Dynamics of a piecewise linear map with a gap, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), pp. 49–65. · Zbl 1133.37317
[79] S. J. Hogan, On the dynamics of rigid block motion under harmonic forcing, Proc. Roy. Soc. London Ser. A, 425 (1989), pp. 441–476.
[80] A. J. Homburg, Global aspects of homoclinic bifurcations of vector fields, Mem. Amer. Math. Soc., 578 (1996). · Zbl 0862.34042
[81] A. J. Homburg, Piecewise smooth interval maps with non-vanishing derivative, Ergodic Theory Dynam. Systems, 20 (2000), pp. 749–773. · Zbl 0963.37032
[82] A. J. Homburg and B. Krauskopf, Resonant homoclinic flip bifurcations, J. Dynam. Differential Equations, 12 (2000), pp. 807–850. · Zbl 0990.37038
[83] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, MA, 2007.
[84] N. D. Jimenez, S. Mihalas, R. Brown, E. Niebur, and J. Rubin, Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1474–1514, . · Zbl 1284.37030
[85] T. Kabe, S. Parui, H. Torikai, S. Banerjee, and T. Saito, Analysis of piecewise constant models of current mode controlled DC–DC converters, IEICI Trans. Fundamentals, E90-A (2007), p. 448.
[86] K. Kaneko, On the period-adding phenomena at the frequency locking in a one-dimensional mapping, Progr. Theoret. Phys., 68 (1982), pp. 669–672. · Zbl 1098.37520
[87] S. Kapat, S. Banerjee, and A. Patra, Discontinuous map analysis of a DC-DC converter governed by pulse skipping modulation, IEEE Trans. Circuits Syst. I Regul. Pap., 57 (2010), pp. 1793–1801.
[88] J. P. Keener, Chaotic behavior on piecewise continuous difference equations, Trans. Amer. Math. Soc., 261 (1980), pp. 589–604. · Zbl 0458.58016
[89] J. P. Keener, F. C. Hoppensteadt, and J. Rinzel, Integrate-and-fire models of nerve membrane response to oscillatory input, SIAM J. Appl. Math., 41 (1981), pp. 503–517, . · Zbl 0491.92009
[90] M. P. Kennedy and L. O. Chua, Van der Pol and chaos, IEEE Trans. Circuits Syst., CAS-33 (1986), pp. 974–980.
[91] C. Kopf, Symbol sequences and entropy for piecewise monotone transformations with discontinuities, Discrete Contin. Dynam. Systems, 6 (2000), pp. 299–304. · Zbl 1009.37028
[92] C. Kopf, Coding and entropy for piecewise continuous piecewise monotone transformations, Nonlinear Analysis, 61 (2005), pp. 169–275. · Zbl 1070.37019
[93] P. Kowalczyk, Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps, Nonlinearity, 18 (2005), p. 485. · Zbl 1067.37064
[94] P. Kowalczyk, M. di Bernardo, A. R. Champneys, S. J. Hogan, M. Homer, Yu. A. Kuznetsov, A. Nordmark, and P. Piiroinen, Two-parameter discontinuity-induced bifurcations of limit cycles: Classification and open problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), pp. 601–629. · Zbl 1141.37341
[95] N. N. Leonov, On a pointwise mapping of a line into itself, Radiofisika, 2 (1959), pp. 942–956 (in Russian).
[96] N. N. Leonov, On a discontinuous piecewise-linear pointwise mapping of a line into itself, Radiofisika, 3 (1960), pp. 496–510 (in Russian).
[97] N. N. Leonov, On the theory of a discontinuous mapping of a line into itself, Radiofisika, 3 (1960), pp. 872–886 (in Russian).
[98] N. N. Leonov, On a discontinuous pointwise mapping of a line into itself, Dokl. Akad. Nauk SSSR, 143 (1962), pp. 1038–1041.
[99] M. Levi, A period-adding phenomenon, SIAM J. Appl. Math., 50 (1990), pp. 943–955, . · Zbl 0724.34041
[100] D. V. Lyubimov, A. S. Pikovsky, and M. A. Zaks, Universal Scenarios of Transitions to Chaos via Homoclinic Bifurcations, Math. Phys. Rev. 8, Harwood Academic, London, 1989. Russian version 1986 as a Preprint (192) of Russian Academy of Science, Institute of Mechanics of Solid Matter, Sverdlovsk.
[101] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Phys. D, 241 (2012), pp. 1826–1844.
[102] Y. Matsuoka and T. Saito, Rotation map with a controlling segment and its application to A/D converters, IEICI Trans. Fundamentals, E91-A (2008), pp. 1725–1732.
[103] X. Meng, G. Huguet, and J. Rinzel, Type III excitability, slope sensitivity and coincidence detection, Discrete Contin. Dynam. Systems, 32 (2012), pp. 2720–2757. · Zbl 1241.92013
[104] C. Mira, Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism, World Scientific, Singapore, 1987. · Zbl 0641.58002
[105] M. Misiurevicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), pp. 45–63. · Zbl 0445.54007
[106] O. Mondragón-Palomino, T. Danino, J. Selimkhanov, L. Tsimring, and J. Hasty, Entrainment of a population of synthetic genetic oscillators, Science, 333 (2011), pp. 1315–1319. · Zbl 1355.92068
[107] Z. Nitecki, Differentiable Dynamics: Introduction to the Orbit Structure of Diffeomorphisms, MIT Press, Cambridge, MA, 1971. · Zbl 0246.58012
[108] A. B. Nordmark and P. Kowalczyk, A codimension-two scenario of sliding solutions in grazing-sliding bifurcations, Nonlinearity, 19 (2006), pp. 1–26. · Zbl 1102.37034
[109] A. B. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), pp. 1517–1542. · Zbl 1001.70020
[110] P. T. Piiroinen, L. N. Virgin, and A. R. Champneys, Chaos and period-adding: Experimental and numerical verification of the grazing bifurcation, J. Nonlinear Sci., 14 (2004), pp. 383–404. · Zbl 1125.70015
[111] H. Poincaré, Mémoire sur les courbes définiés par une équation differentielle, J. Math., 7 (1981), pp. 375–422.
[112] E. Ponce, J. Ros, and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Phys. D, 250 (2013), pp. 34–46. · Zbl 1268.37073
[113] I. Procaccia, S. Thomae, and C. Tresser, First-return maps as a unified renormalization scheme for dynamical systems, Phys. Rev. A, 35 (1987), pp. 1884–1900.
[114] B. Rakshit, M. Apratim, and S. Banerjee, Bifurcation phenomena in two-dimensional piecewise smooth discontinuous maps, Chaos, 3 (2010), 033101. · Zbl 1311.93047
[115] F. Rhodes and C. L. Thompson, Rotation numbers for monotone functions on the circle, J. London Math. Soc., 34 (1986), pp. 360–368. · Zbl 0623.58008
[116] T. Saito, T. Kabe, Y. Ishikawa, Y. Matsuoka, and H. Torikai, Piecewise constant switched dynamical systems in power electronics, Internat. J. Bifur. Chaos, 17 (2007), pp. 3373–3386. · Zbl 1141.37300
[117] J. Signereska-Rynkowska, J. Touboul, and A. Vidal, A Geometric Mechanism for Mixed-Mode Bursting Oscillations in a Hybrid Neuron Model, preprint, , 2015.
[118] D. J. W. Simpson, Border-collision bifurcations in \(\mathbb{R}^n\), SIAM Rev., 58 (2016), pp. 177–226, . · Zbl 1386.39022
[119] D. J. W. Simpson and J. D. Meiss, Simultaneous border-collision and period-doubling bifurcations, Chaos, 19 (2009), 033146. · Zbl 1317.34077
[120] D. J. W. Simpson and J. D. Meiss, Neimark–Sacker bifurcations in planar, piecewise-smooth, continuous maps, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 795–824, . · Zbl 1159.37419
[121] A. C. Skeldon, D.-J. Dijk, and G. Derks, Mathematical models for sleep-wake dynamics: Comparison of the two-process model and a mutual inhibition neuronal model, PLoS One, 9 (2014), e103877.
[122] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982. · Zbl 0504.58001
[123] G. Swiatek, Endpoints of rotation intervals for maps of the circle, Ergodic Theory Dynam. Systems, 9 (1989), pp. 173–190. · Zbl 0689.58023
[124] P. H. E. Tiesinga, J.-M. Fellous, and T. J. Sejnowski, Spike-time reliability of periodically driven integrate-and-fire neurons, Neurocomputing, 44 (2002), pp. 195–200. · Zbl 1007.68837
[125] A. Tonnelier, Threshold curve for the excitability of bidimensional spiking neurons, Phys. Rev. E, 90 (2014), 022701.
[126] J. Touboul and R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model, Biol. Cybernet, 99 (2008), pp. 319–334. · Zbl 1161.92016
[127] J. Touboul and R. Brette, Spiking dynamics of bidimensional integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1462–1506, . · Zbl 1204.37019
[128] F. Tramontana, L. Gardini, and F. Westerhoff, Heterogeneous speculators and asset price dynamics: Further results from a one-dimensional discontinuous piecewise-linear model, Comput. Economics, 38 (2011), pp. 329–347. · Zbl 1247.91066
[129] F. Tramontana, F. Westerhoff, and L. Gardini, On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders, J. Econom. Behav. Organ., 74 (2010), pp. 187–205.
[130] D. V. Turaev and L. P. Shil’nikov, Bifurcations of a homoclinic “figure eight” saddle with a negative saddle value, Soviet Math. Dokl., 34 (1987), pp. 397–401. · Zbl 0638.34037
[131] V. I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Automat. Control, 22 (1977), pp. 212–222. · Zbl 0382.93036
[132] V. I. Utkin, Sliding mode control design principles and applications to electric drives, IEEE Trans. Indust. Electr., 40 (1993), pp. 23–36.
[133] P. Veerman, Irrational rotation numbers, Nonlinearity, 2 (1989), pp. 419–428. · Zbl 0677.58030
[134] M. A. Zaks, Scaling properties and renormalization invariants for the “homoclinic quasiperiodicity,” Phys. D, 62 (1993), pp. 300–316. · Zbl 0783.58054
[135] Zh. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises 44, World Scientific, Singapore, 2003. · Zbl 1047.34048
[136] Zh. T. Zhusubaliyev, E. Mosekilde, S. De, and S. Banerjee, Transitions from phase-locked dynamics to chaos in a piecewise-linear map, Phys. Rev. E, 77 (2008), pp. 1–11.
[137] Zh. T. Zhusubaliyev, E. A. Soukhoterin, V. N. Rudakov, Y. V. Kolokolov, and E. Mosekilde, Bifurcations and chaotic oscillations in an automatic control relay system with hysteresis, Internat. J. Bifur. Chaos, 11 (2001), pp. 1193–1231. · Zbl 1206.37054
[138] Zh. T. Zhusubaliyev, E. Mosekilde, A. I. Andriyanov, and G. Y. Mikhal’chenko, High-feedback operation of power electronic converters, electronics, 2 (2013), pp. 113–167.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.