×

Numerical issues in gas flow dynamics with hydraulic shocks using high order finite volume WENO schemes. (English) Zbl 1453.76112

Summary: Accurate and efficient simulation of the hydraulic shock phenomenon in pipeline systems is of paramount importance. Even though the conservation-law formulation of the governing equations is here strongly advocated, the nonconservative form is still frequently used. This also concerns its mathematical conservative form. We investigated the numerical consequences of using the compressible gas flow model in the latter form while simulating a hydraulic shock. In this context, we also solved two Riemann problems. For the investigation, we used the third-, fifth- and seventh-order accurate weighted essentially non-oscillatory (WENO) scheme along with the Lax-Friedrichs solver at the cell interfaces. Both the classical finite volume WENO scheme and its modification WENO-Z have been implemented. A procedure based on the method of manufactured solutions has been developed to verify whether the numerical code solved correctly the hyperbolic set of equations. We demonstrated that the solutions of the conservative and nonconservative formulations are similar if we have smooth variations in the solution domain. The convective inertia term in the momentum equation should not be ignored. In the presence of shocks, differences in oscillating behavior and slope steepness near the discontinuities were observed. For the hydraulic shock problem, spurious oscillations appeared while using the nonconservative formulation in combination with the WENO-Z reconstruction.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics

Software:

HE-E1GODF; PVM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ghidaoui, M. S.; Zhao, M.; McInnis, D. A.; Axworthy, D. H., A review of water hammer theory and practice, Appl. Mech. Rev., 58, 1, 49-76 (2005)
[2] Wylie, E. B.; Streeter, V. L.; Suo, L., Fluid Transients in Systems (1993), Prentice Hall: Prentice Hall Englewood Cliffs
[3] Wood, D. J.; Lingireddy, S.; Karney, B. W.; Mcpherson, D. L., Numerical methods for modelling transient flow in distribution systems, J. Am. Water Works Assoc., 97, 7, 104-115 (2005)
[4] Mahgerefteh, H.; Saha, P.; Economou, I. G., A study of the dynamic response of emergency shutdown valves following full bore rupture of gas pipelines, Process Saf. Environ. Prot., 75, 4, 201-209 (1997)
[5] Uilhoorn, F. E., Estimating rapid flow transients using extended Kalman filter, Sil. J. Pure Appl. Math., 6, 1, 97-110 (2016)
[6] Gyrya, V.; Zlotnik, A., An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks, Appl. Math. Model., 65, 34-51 (2019) · Zbl 1480.76102
[7] Kiuchi, T., An implicit method for transient gas flows in pipe networks, Int. J. Heat Fluid Flow, 15, 5, 378-383 (1994)
[8] Chaczykowski, M., Transient flow in natural gas pipeline - the effect of pipeline thermal model, Appl. Math. Model., 34, 4, 1051-1067 (2010) · Zbl 1185.76853
[9] Abbaspour, M.; Chapman, K. S., Nonisothermal transient flow in natural gas pipeline, J. Appl. Mech., 75, 3, 1-8 (2008)
[10] Ding, Y.; Li, Y., Study on effect of valve operation on transient flow in natural gas pipelines, (2010 International Conference on Digital Manufacturing & Automation. 2010 International Conference on Digital Manufacturing & Automation, Changsha (2010)), 463-466
[11] Greyvenstein, G. P., An implicit method for the analysis of transient flows in pipe networks, Numer. Methods Eng., 53, 5, 1127-1143 (2002)
[12] Oosterkamp, A.; Helgaker, J.; Ytrehus, T., Modelling of natural gas pipe flow with rapid transients-case study of effect of ambient model, Energy Proc., 64, 101-110 (2015)
[13] Schwartz, L., Sur l’impossibilit’e de la multiplication des distributions, C. R. Acad. Sci., 239, 847-848 (1954) · Zbl 0056.10602
[14] Toro, E. F., Defects of Conservative Approaches and Adaptive Primitive-Conservative Schemes for Computing Solutions to Hyperbolic Conservation Laws (1994), Department of Mathematics and Physics, Manchester Metropolitan University: Department of Mathematics and Physics, Manchester Metropolitan University UK, Technical Report MMU 9401
[15] Toro, E. F., On adaptive primitive-conservative schemes for conservation laws, (Hafez, M. M., Sixth International Symposium on Computational Fluid Dynamics. Sixth International Symposium on Computational Fluid Dynamics, Lake Tahoe, Nevada, USA, vol. 3 (1995)), 288-1293
[16] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction (2009), Springer-Verlag Berlin Heidelberg · Zbl 1227.76006
[17] Hou, T.; Le Floch, P. G., Why nonconservative schemes converge to wrong solutions: error analysis, Math. Comput., 62, 206, 497-530 (1994) · Zbl 0809.65102
[18] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[19] Muñoz, M. L.; Parés, C., Godunov method for nonconservative hyperbolic systems, Math. Model. Numer. Anal., 169-185 (2007) · Zbl 1124.65077
[20] Castro, M. J.; Gallardo, J. M.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comput., 75, 1103-1134 (2006) · Zbl 1096.65082
[21] Gallardo, J. M.; Parés, C.; Castro, M. J., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227, 574-601 (2007) · Zbl 1126.76036
[22] Castro, M. J.; Gallardo, J. M.; López, J. A.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal., 1012-1039 (2008) · Zbl 1159.74045
[23] Castro, M. J.; Pardo, A.; Parés, C.; Toro, E. F., On some fast well-balanced first order solvers for nonconservative systems, Math. Comput., 79, 1427-1472 (2010) · Zbl 1369.65107
[24] Castro, M. J.; Fernández-Nieto, E., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput., 34, A2173-A2196 (2012) · Zbl 1253.65167
[25] Castro, M. J.; Fernández-Nieto, E. D.; de Luna, T. M.; Narbona-Reina, G.; Parés, C., A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport, ESAIM: Math. Model. Numer. Anal., 47, 1-32 (2013) · Zbl 1268.76037
[26] de Luna, T. M.; Castro, M. J.; Parés, C., Relation between PVM schemes and simple Riemann solvers, Numer. Methods Partial Differ. Equ., 30, 1315-1341 (2014) · Zbl 1297.65102
[27] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[28] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[29] Dumbser, M.; Toro, E. F., A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[30] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[31] Maso, G. D.; LeFloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[32] Ke, S.; Ti, H., Transient analysis of isothermal gas flow in pipeline network, Chem. Eng. J., 76, 169-177 (2000)
[33] Pambour, K.; Bolado-Lavin, R.; Dijkema, G. P., An integrated transient model for simulating the operation of natural gas transport systems, J. Nat. Gas Sci. Eng., 28, 672-690 (2016)
[34] Arora, M.; Roe, P. L., On postshock oscillations due to shock capturing schemes in unsteady, J. Comput. Phys., 130, 1 (1997) · Zbl 0869.76050
[35] Zaide, D. W.; Roe, P. L., A Second-Order Finite Volume Method That Reduces Numerical Shockwave Anomalies in One Dimension (2018)
[36] Sweby, P. K., High resolution TVD schemes using flux limiters, Appl. Math. Lett., 22, 289-309 (1985) · Zbl 0586.76119
[37] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050
[38] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. Comput. Phys., 131, 1, 3-47 (1997) · Zbl 0866.65058
[39] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[40] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 1, 200-212 (1994) · Zbl 0811.65076
[41] Zhang, D.; Jiang, C.; Liang, D.; Cheng, L., A review on TVD schemes and a refined flux-limiter for steady-state calculations, J. Comput. Phys., 302, 114-154 (2015) · Zbl 1349.76558
[42] Gottlieb, S.; Ketcheson, D.; Shu, C. W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011), World Scientific Publishing · Zbl 1241.65064
[43] Osher, S.; Chakravarthy, S., High resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21, 5, 955-984 (1984) · Zbl 0556.65074
[44] Arora, M.; Roe, P. L., A well-behaved TVD limiter for high-resolution calculations of unsteady flow, J. Comput. Phys., 132, 3-11 (1997) · Zbl 0878.76045
[45] Liu, S.; Shen, Y.; Chen, B.; Zeng, F., Novel local smoothness indicators for improving the third-order WENO scheme, Int. J. Numer. Methods Fluids, 87, 2, 51-69 (2016)
[46] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 6, 3191-3211 (2008) · Zbl 1136.65076
[47] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 2, 542-567 (2005) · Zbl 1072.65114
[48] Shu, C.-W., Total-variation diminishing time discretizations, SIAM J. Sci. Comput., 9, 1073-1084 (1988) · Zbl 0662.65081
[49] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[50] Oberkampf, W. L.; Roy, C. J., Verification and Validation in Scientific Computing (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1211.68499
[51] Roache, P., Verification and Validation in Computational Science and Engineering (1998), Hermosa Publishers: Hermosa Publishers Albuquerque, NM
[52] Salari, K.; Knupp, P., Code Verification by the Method of Manufactured Solutions (2000), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM, Tech. rep., SAND 2000-1444
[53] Gottlieb, S., On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., 25, 1, 105-128 (2005) · Zbl 1203.65166
[54] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[55] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (1998), Springer Berlin Heidelberg), 325-432 · Zbl 0927.65111
[56] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[57] Dutykh, D.; Katsaounis, T.; Mitsotakis, D., Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys., 230, 8, 3035-3061 (2011) · Zbl 1218.65092
[58] Greenberg, J.; Roux, A.-Y. L., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1-16 (1996) · Zbl 0876.65064
[59] Gosse, L.; LeRoux, A.-Y., A well balanced scheme designed for inhomogeneuos scalar conservation laws, C. R. Acad. Sci., Sér. 1 Math., 3, 323, 543-546 (1996) · Zbl 0858.65091
[60] Roe, P., Upwind differenced schemes for hyperbolic conservation laws with source terms, (Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop. Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Etienne. Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop. Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Etienne, Lect. Notes Math., vol. 1270 (1986), Springer: Springer Berlin)
[61] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[62] Jin, S., A steady-state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35, 4, 631-645 (2001) · Zbl 1001.35083
[63] Sjögreen, B.; Petersson, N., A Cartesian embedded boundary method for hyperbolic conservation laws, Commun. Comput. Phys., 2, 1199-1219 (2007) · Zbl 1164.76354
[64] Tan, S.; Shu, C.-W., Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws, J. Comput. Phys., 229, 8144-8166 (2010) · Zbl 1198.65174
[65] Tan, S.; Shu, C.-W., A high order moving boundary treatment for compressible inviscid flows, J. Comput. Phys., 230, 6023-6036 (2011) · Zbl 1416.76193
[66] Lu, J.; Fang, J.; Tan, S.; Shu, C.-W.; Zhang, M., Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations, J. Comput. Phys., 317, 276-300 (2016) · Zbl 1349.65319
[67] Gottlieb, S.; Ketcheson, D.; Shu, C.-W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011) · Zbl 1241.65064
[68] Butcher, J. C., On Runge-Kutta processes of high order, J. Aust. Math. Soc., 4, 2, 179-194 (1964) · Zbl 0244.65046
[69] Sarafyan, D., Approximate solution of ordinary differential equations and their systems through discrete and continuous embedded Runge-Kutta formulae and upgrading of their order, Comput. Math. Appl., 28, 10-12, 353-384 (1994) · Zbl 0817.65061
[70] Afshar, H.; Kerachian, R.; Bazargan-Lari, M. R.; Niktash, A. R., Developing a closing rule curve for valves in pipelines to control the water hammer impacts: application of the NSGA-II optimization model, (Proceedings of the 7th International Pipelines Conference. Proceedings of the 7th International Pipelines Conference, IPC ’08 (July 2008), American Society of Civil Engineering Pipelines (ASCE): American Society of Civil Engineering Pipelines (ASCE) Atlanta, GA, USA), 1-10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.