×

zbMATH — the first resource for mathematics

A 2.5 D finite/infinite element approach for modelling viscoelastic bodies subjected to moving loads. (English) Zbl 1065.74623
Summary: The objective of this study is to propose a 2.5 D finite/infinite element procedure for dealing with the ground vibrations induced by moving loads. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing loads and irregular structures is simulated by the finite elements, while the far field covering the soils extending to infinity by the infinite elements with due account taken of the radiation effects for moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, the accuracy of the proposed method is verified through comparison with a number of analytical solutions.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74L10 Soil and rock mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eason, International Journal of Engineering Science 2 pp 581– (1965) · Zbl 0138.21001 · doi:10.1016/0020-7225(65)90038-8
[2] Gakenheimer, Journal of Applied Mechanics 36 pp 505– (1969) · Zbl 0194.27702 · doi:10.1115/1.3564708
[3] Vibration of Solids and Structures under Moving Loads. Noordhoff International Publishing: Groningen, The Netherlands, 1972. · doi:10.1007/978-94-011-9685-7
[4] Alabi, Journal of Sound and Vibration 153 pp 77– (1992) · Zbl 0925.73729 · doi:10.1016/0022-460X(92)90628-B
[5] de Barros, Wave Motion 19 pp 189– (1994) · Zbl 0926.74038 · doi:10.1016/0165-2125(94)90066-3
[6] Grundmann, Archive of Applied Mechanics 69 pp 55– (1999) · Zbl 0955.74038 · doi:10.1007/s004190050204
[7] Beskos, Applied Mechanics Review 40 pp 1– (1987) · doi:10.1115/1.3149529
[8] Estorff, Earthquake Engineering and Structural Dynamics 18 pp 1065– (1989) · doi:10.1002/eqe.4290180711
[9] Beskos, Applied Mechanics Review 50 pp 149– (1997) · doi:10.1115/1.3101695
[10] Lysmer, Journal of Engineering Mechanics Division 98 pp 85– (1972)
[11] Kausel, Journal of Engineering Mechanics Division 101 pp 679– (1975)
[12] Lysmer, Journal of Engineering Mechanics Division 95 pp 859– (1969)
[13] Kausel, Journal of Engineering Mechanics Division 103 pp 569– (1977)
[14] Wolf, Earthquake Engineering and Structural Dynamics 25 pp 1307– (1996) · doi:10.1002/(SICI)1096-9845(199611)25:11<1307::AID-EQE613>3.0.CO;2-0
[15] An infinite finite element. M.A.Sc. Thesis, University of British Columbia, 1973.
[16] Bettess, International Journal for Numerical Methods in Engineering 11 pp 53– (1977) · Zbl 0362.65093 · doi:10.1002/nme.1620110107
[17] Beer, International Journal for Numerical Methods in Engineering 17 pp 43– (1981) · Zbl 0453.73077 · doi:10.1002/nme.1620170104
[18] Chow, International Journal for Numerical Methods in Engineering 17 pp 503– (1981) · Zbl 0473.73070 · doi:10.1002/nme.1620170403
[19] Medina, Earthquake Engineering and Structural Dynamics 10 pp 699– (1982) · doi:10.1002/eqe.4290100507
[20] Rajapakse, International Journal of Solids and Structures 22 pp 643– (1986) · Zbl 0594.73028 · doi:10.1016/0020-7683(86)90028-4
[21] Zhang, Earthquake Engineering and Structural Dynamics 15 pp 839– (1987) · doi:10.1002/eqe.4290150705
[22] Yun, International Journal for Numerical Methods in Engineering 38 pp 3723– (1995) · Zbl 0835.73085 · doi:10.1002/nme.1620382202
[23] Yang, International Journal for Numerical Methods in Engineering 39 pp 3553– (1996) · Zbl 0877.73072 · doi:10.1002/(SICI)1097-0207(19961030)39:20<3553::AID-NME16>3.0.CO;2-6
[24] Bettess, International Journal for Numerical Methods in Engineering 11 pp 1271– (1977) · Zbl 0367.76014 · doi:10.1002/nme.1620110808
[25] Lau, International Journal for Numerical Methods in Engineering 28 pp 1371– (1989) · Zbl 0687.76009 · doi:10.1002/nme.1620280610
[26] Park, Computers and Structures 40 pp 837– (1991) · doi:10.1016/0045-7949(91)90313-B
[27] Zhao, Computer Methods in Applied Mechanics and Engineering 108 pp 119– (1993) · Zbl 0783.73077 · doi:10.1016/0045-7825(93)90156-R
[28] Zhao, International Journal for Numerical and Analytical Methods in Geomechanics 17 pp 323– (1993) · Zbl 0797.76047 · doi:10.1002/nag.1610170504
[29] Zhao, International Journal for Numerical Methods in Engineering 37 pp 1143– (1994) · Zbl 0807.76042 · doi:10.1002/nme.1620370704
[30] Hwang, Journal of Geotechnical Engineering Division 107 pp 183– (1981)
[31] Hanazato, Journal of Geotechnical Engineering 117 pp 1133– (1991) · doi:10.1061/(ASCE)0733-9410(1991)117:8(1133)
[32] Soil moduli and damping factors for dynamic response analysis. Report No. EERC 70-10, University of California, Berkeley, 1970.
[33] Wave Motion in Elastic Solids. Dover Publications: New York, 1973.
[34] Dieterman, European Journal of Mechanics and Solids 15 pp 67– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.