×

zbMATH — the first resource for mathematics

A new mapped infinite wave element for general wave diffraction problems and its validation on the ellipse diffraction problem. (English) Zbl 0961.76041
From the summary: We present the theory for an improved infinite element for wave diffraction. The modification involves the introduction of one extra term in shape function derivatives, and a change in the numerical integration. The element can be used on elliptic and other non-circular meshes. As a test, we study the diffraction problem for elliptical cylinder.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atalianis, C.A., Wave forces on a vertical cylinder of elliptical shape, ()
[2] Atalianis, C.A., Hydrodynamic analysis of structures by a hybrid method, ()
[3] Astley, R.J.; Eversman, W., A note on the utility of a wave envelope approach in finite element duct transmission studies, J. sound vib., 76, 595-601, (1981)
[4] Astley, R.J., Wave envelope and infinite elements for acoustical radiation, Int. J. numer. methods fluids, 3, 507-526, (1983) · Zbl 0562.76083
[5] Astley, R.J.; Eversman, W., Finite element formulations for acoustical radiation, J. sound vib. res., 88, 1, 47-64, (1983) · Zbl 0538.73036
[6] Astley, R.J.; Eversman, W., Wave envelope and infinite element schemes for Fan noise radiation from turbofan inlets, A.i.a.a.j., 22, 12, 1719-1726, (1984) · Zbl 0556.76072
[7] Astley, R.J., A finite element wave envelope formulation for acoustical radiation in moving flows, J. sound vib., 103, 471-485, (1986)
[8] Astley, R.J.; Eversman, W., Wave envelope elements for acoustical radiation in inhomogeneous media, Comput. struct., 30, 4, 801-810, (1988) · Zbl 0671.73025
[9] Astley, R.J.; Coyette, J.P., Applications of wave envelope elements to acoustical scattering, to appear, () · Zbl 0925.76419
[10] Astley, R.J.; Coyette, J.P., Mapped wave envelope elements of infinite extent: applications to acousto-structural scattering to appear, () · Zbl 0925.76419
[11] Astley, R.J.; Bettess, P.; Clark, P.J., Int. J. numer. methods engrg., 32, 1, 207-209, (1991), Letter to the Editor concerning Ref. [65]
[12] Astley, R.J.; Macaulay, G.J.; Coyette, J.P., Mapped wave envelope elements for acoustical radiation and scattering, J. sound vib., 170, 1, 97-118, (1994) · Zbl 0925.76419
[13] Astley, R.J., Mapped spheroidal wave-envelope elements for unbounded wave problems, Int. J. numer. methods engrg., (1997), to appear · Zbl 0924.76056
[14] Barbier, C.; Bettess, P.; Bettess, J.A., Automatic generation of mapping functions for infinite elements using REDUCE, J. symbolic comput., 14, 523-534, (1992) · Zbl 0779.68047
[15] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, ICASE report no. 79-26, (1979)
[16] Bayliss, A.; Gunzberger, M.; Turkel, E., Boundary conditions for the numerical solution of elliptic equations in exterior regions, ICASE report no. 80-1, (1980)
[17] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[18] Berkhoff, J.C.W., Computation of combined refraction-diffraction, () · Zbl 0428.76020
[19] Berkhoff, J.C.W., Linear wave propagation problems and the finite element method, (), 251-280
[20] Bettess, P.; Bettess, J.A., WAVE, A finite element program for solving the wave equation, () · Zbl 0549.73031
[21] Bettess, P., Infinite elements, Int. J. numer. methods engrg., 11, 53-64, (1977) · Zbl 0362.65093
[22] Bettess, P., Infinite elements, (1992), Penshaw Press Sunderland, UK, ISBN 0-9518806-0-8
[23] Bettess, P., More on infinite elements, Int. J. methods engrg., 15, 1613-1626, (1980) · Zbl 0439.73073
[24] Bettess, P., A simple wave envelope test example, Comm. in appl. numer. methods, 3, 77-80, (1987) · Zbl 0624.76109
[25] (), (1)
[26] Bettess, P.; Zienkiewicz, O.C., Diffraction and refraction of surface waves using finite and infinite elements, Int. J. numer. methods engrg., 11, 1271-1290, (1977) · Zbl 0367.76014
[27] Bettess, P.; Emson, C.R.I.; Bando, K., Some useful techniques for testing infinite elements, Appl. math. modell., 6, 436-440, (1982) · Zbl 0497.73081
[28] Bettess, P.; Liang, S.-C.; Bettess, J.A., Diffraction of waves by semi-infinite breakwater using finite and infinite elements, Int. J. numer. methods fluids, 4, 9, 813-832, (1984) · Zbl 0577.76023
[29] Bettess, P.; Bettess, J.A., Infinite elements for static problems, Engrg. comput., 1, 4-16, (1984) · Zbl 0577.76023
[30] Bettess, P.; Emson, C.R.I.; Chiam, T.C., A new mapped infinite element for exterior wave problems, (), Chapter 17 of · Zbl 0558.73023
[31] Blanch, G.; Clemm, D.S., ()
[32] Burnett, D.S., A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion, J. acoust soc. am., 95, 5, 2798-2816, (1994)
[33] Chen, H.S.; Mei, C.C., Oscillations and wave forces in a man-made harbor in the open sea, ()
[34] Chen, H.S.; Mei, C.C., Oscillations and wave forces in an offshore harbor, Ralph M. parsons laboratory for water resources and hydrodynamics, M.I.T., report no. 190, (1974)
[35] Chen, H.S., Infinite elements for water wave radiation and scattering, Int. J. numer. methods fluids, 11, 555-569, (1990) · Zbl 0711.76009
[36] Chen, H.S.; Mei, C.C., Wave forces on a stationary platform of elliptical shape, J. ship res., 17, 2, 61-71, (1973)
[37] Chen, H.S.; Mei, C.C., Scattering and radiation of gravity waves by an elliptical cylinder, Parsons laboratory, department of civil engineering, M.I.T. technical report no. 140, (July, 1969)
[38] Clemm, D.S., Algorithm 352, characteristic values and associated solutions of Mathieu’s differential equation (s22), Comm. assoc. comput. Mach., 12, 7, (July, 1969)
[39] Cremers, L.; Fyfe, K.R.; Coyette, J.P., A variable order infinite acoustic wave envelope element, J. sound vib., 171, 4, 483-508, (1994) · Zbl 1059.76516
[40] Cremers, L.; Fyfe, K.R., On the use of variable order infinite wave envelope elements for acoustic radiation and scattering, J. acoust. soc. am., 97, 4, 2028-2040, (1995)
[41] Gerdes, K., The conjugated versus the unconjugated infinite element method for the Helmholtz equation in exterior domains, () · Zbl 0944.65117
[42] The group numerical analysis at Delft university of technology, on the computation of Mathieu functions, J. engrg. math., 7, 1, (January, 1972)
[43] Goransson, J.P.E.; Davidsson, C.F., A three dimensional infinite element for wave propagation, J. sound vib., 115, 3, 556-559, (1987)
[44] Hara, H.; Kanehiro, K.; Ashida, H.; Sugawara, T.; Yoshimura, T., Numerical simulation system for wave diffraction and response of offshore structures, (), 1-9, Published by
[45] Hara, H.; Kanehiro, K.; Ashida, H.; Sugawara, T.; Yoshimura, T., Numerical simulation system for wave diffraction and response of offshore structures, Mitsui engineering and shipbuilding co., technical bulletin, TB 83-07, (October, 1983)
[46] Havelock, T.H., The pressure of water waves on a fixed obstacle, (), 409-421 · Zbl 0025.27701
[47] Ince, E.L., Tables of the elliptic-cylinder functions, (), 25-433, (4) · Zbl 0005.29601
[48] Karaiosifidis, S., A comparison of solution methods for exterior surface wave problems, (), (C/M/120/76)
[49] Karp, S.N., A convergent ‘farfield’ expansion for two-dimensional radiation functions, Comm. pure appl. math., XIV, 427-434, (1961) · Zbl 0117.29802
[50] Kay, S.; Bettess, P., Revised mapping functions for three-dimensional serendipity infinite elements, Comm. numer. methods engrg., 12, 181-184, (1996) · Zbl 0852.73063
[51] Horace Lamb, Sir, Hydrodynamics, (1932), Cambridge Universtiy Press · JFM 58.1298.04
[52] Lau, S.L.; Ji, Z., An efficient 3-D infinite element for water wave diffraction problems, Int. J. numer. methods engrg., 28, 1371-1387, (1989) · Zbl 0687.76009
[53] MacCamy, R.C.; Fuchs, R.A., Wave forces on piles. A diffraction theory, Beach erosion board tech. mem. no. 69, (1954)
[54] Marques, J.M.M.C.; Owen, D.R.J., Infinite elements in quasi-static materially non-linear problems, Comput. struct., 18, 4, 739-751, (1984) · Zbl 0512.73077
[55] Marques, J.M.M.C.; Owen, D.R.J., Implicit-explicit time integration in quasistatic elastoviscoplasticity using finite and infinite elements, Comput. methods appl. mech. engrg., 42, 2, 167-182, (1984) · Zbl 0512.73077
[56] McLachlan, H.W., Theory and application of Mathieu functions, (1960), Oxford University Press
[57] Mei, C.C., The applied dynamics of Ocean surface waves, (1983), Wiley New York · Zbl 0562.76019
[58] Moyer, E.T., Performance of mapped infinite elements for exterior wave scattering applications, Comm. appl. numer. methods, 8, 27-39, (1992) · Zbl 0746.65074
[59] Pantic, Z.; Mittra, R., Quasi-tem analysis of microwave transmission lines by the finite element method, I.E.E.E. trans. microwave theory tech., MTT-34, 11, 1096-1103, (1986)
[60] Rellich, F., Über das asymptotische verhalten der Lösungen von δu + λu = 0 in unendlichen gebeiten, Jahresbericht der deutschen mathematiker vereinigung, 53, 57-65, (1943) · Zbl 0028.16401
[61] Sommerfeld, A., Theorie mathematique de la diffraction, Math. ann., 47, 317-374, (1986) · JFM 27.0706.03
[62] Sommerfeld, A., Partial differential equations in physics, (1949), Academic Press New York
[63] Ungless, R.L., An infinite finite element, ()
[64] Wilcox, C.H., An expansion theorem for electromagnetic fields, Comm. pure and appl. math., IX, 115-134, (1956) · Zbl 0071.21203
[65] A.N. Williams, The linear theory of wave diffraction by a vertical cylinder of elliptic cross-section in water of finite depth, Fluid Dynamics Report 3/82, Department of Mathematics, University of Reading, Whiteknights, Reading, RG6 2AX, UK.
[66] Williams, A.N., Wave forces on an elliptic cylinder, (), 433-449, (2)
[67] Zienkiewicz, O.C.; Bettess, P., Infinite elements in the study of fluid structure interaction problems, (), also published in: · Zbl 0385.73050
[68] Zienkiewicz, O.C.; Bettess, P.; Kelly, D.W., The finite element method for determining fluid loadings on rigid structures: two-and three-dimensional formulations, (), 141-183, Chapter 4
[69] Zienkiewicz, O.C.; Bettess, P., Fluid structure interaction, (), Chapter 5 · Zbl 0385.73050
[70] Zienkiewicz, O.C.; Bettess, P.; Chiam, T.C.; Emson, C.R.I., Numer. methods for unbounded field problems and a new infinite element formulation, (), 115-148
[71] Zienkiewicz, O.C.; Emson, C.R.I.; Bettess, P., A novel boundary infinite element, Int. J. numer. methods engrg., 19, 393-404, (1983) · Zbl 0503.73054
[72] Zienkiewicz, O.C.; Bando, K.; Bettess, P.; Emson, C.R.I.; Chiam, T.C., Mapped infinite elements for exterior wave problems, Int. J. numer. methods engrg., 21, 1229-1251, (1985) · Zbl 0575.65114
[73] Zienkiewicz, O.C.; Taylor, R.L., (), (and first three editions)
[74] Zienkiewicz, O.C.; Bettess, P., Appl. Ocean res., 4, 2, 124, (1982), Letter discussing Ref. [99]
[75] Zienkiewicz, O.C.; Kelly, D.W.; Bettess, P., The coupling of the finite element method and boundary solution procedures, Int. J. numer. methods in engrg., 11, 355-365, (1977) · Zbl 0347.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.