×

GNBC-based front-tracking method for the three-dimensional simulation of droplet motion on a solid surface. (English) Zbl 1410.76303

Summary: Previous front-tracking (FT) method-based models to simulate droplet motion on a solid surface with a moving contact line (MCL) are limited to two-dimensional models in which the Navier boundary condition (NBC) is employed for the MCL. In this paper, we develop a three-dimensional FT method that integrates the generalized Navier boundary condition (GNBC) to model the MCL. This GNBC-based FT method addresses several key issues, such as the integration of GNBC for the dynamic description of the MCL and its coupling with the surrounding flow, the accurate updating of the density and viscosity of the two-phase fluid near the contact line, and the restructuring of the Lagrangian mesh for tracking the drop surface, especially near the contact line. The stability and accuracy of the present numerical method are validated by several tests: (1) numerical performance tests, (2) simulation of the transient and steady-state shapes of droplets under flow with a fixed contact line, and (3) simulation of a droplet spreading under gravity and moving under a shear flow with MCLs. Excellent agreement is achieved between the results obtained by our model and the data obtained by other theoretical and numerical approaches.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev Mod Phys, 81, 739‒805, (2009)
[2] Sui, Y.; Ding, H.; Spelt, PDM., Numerical simulations of flows with moving contact lines, Annu Rev Fluid Mech, 46, 97‒119, (2014) · Zbl 1297.76177
[3] Snoeijer, JH.; Andreotti, B., Moving contact lines: scales, regimes, and dynamical transitions, Annu Rev Fluid Mech, 45, 269‒292, (2013) · Zbl 1359.76320
[4] Wörner, M., Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications, Microfluid Nanofluid, 12, 841‒886, (2012)
[5] Dussan, VEB., On the dynamics of liquid spreading on solid surfaces, J Fluid Mech, 209, 191‒226, (1989)
[6] Kistler, SF, Hydrodynamics of wetting, (Berger, J. C., (1993), Marcel Dekker New York), 311-429, Wettability
[7] Jiang, T.; Soogun, O.; Slattery, J., Correlation for dynamic contact angle, J Colloid Interface Sci, 69, 74‒77, (1979)
[8] Qian, T.; Wang, X-P.; Sheng, P., Generalized Navier boundary condition for the moving contact line, Commun Math Sci, 1, 333‒341, (2003) · Zbl 1160.76340
[9] Kralchevsky, PA.; Danov, KD.; Kolev, VL.; Gurkov, TD.; Temelska, MI.; Brenn, G., Detachment of oil drops from solid surfaces in surfactant solutions: molecular mechanisms at a moving contact line, Ind Eng Chem Res, 44, 1309‒1321, (2005)
[10] Ren, W., Contact line dynamics on heterogeneous surfaces, Phys Fluids, 23, (2011) · Zbl 1308.76212
[11] Ajaev, VS.; Gatapova, EY.; Kabov, OA., Stability and break-up of thin liquid films on patterned and structured surfaces, Adv Colloid Interface Sci, 228, 92‒104, (2016)
[12] Ramos, S.; Charlaix, E.; Benyagoub, A.; Toulemonde, M., Wetting on nanorough surfaces, Phys Rev E, 67, (2003)
[13] Ajaev, VS.; Gatapova, EY.; Kabov, OA., Application of Floquet theory to the stability of liquid films on structured surfaces, Phys Fluids, 25, (2013) · Zbl 1320.76011
[14] Kabova, YO.; Alexeev, A.; Gambaryan-Roisman, T.; Stephan, P., Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall, Phys Fluids, 18, (2006)
[15] Petrov, JG.; Ralston, J.; Schneemilch, M.; Hayes, RA., Dynamics of partial wetting and dewetting in well-defined systems, J Phys Chem B, 107, 1634‒1645, (2003)
[16] Afkhami, S.; Zaleski, S.; Bussmann, M., A mesh-dependent model for applying dynamic contact angles to VOF simulations, J Comput Phys, 228, 5370‒5389, (2009) · Zbl 1280.76029
[17] Šikalo, S.; Wilhelm, HD.; Roisman, IV.; Jakirlić, S.; Tropea, C., Dynamic contact angle of spreading droplets: experiments and simulations, Phys Fluids, 17, (2005) · Zbl 1187.76600
[18] Spelt, PDM., A level-set approach for simulations of flows with multiple moving contact lines with hysteresis, J Comput Phys, 207, 389‒404, (2005) · Zbl 1213.76127
[19] Deganello, D.; Croft, TN.; Williams, AJ.; Lubansky, AS.; Gethin, DT.; Claypole, TC., Numerical simulation of dynamic contact angle using a force based formulation, J Non-Newton Fluid, 166, 900‒907, (2011)
[20] Ding, H.; Gilani, MNH.; Spelt, PDM., Sliding, pinch-off and detachment of a droplet on a wall in shear flow, J Fluid Mech, 644, 217‒244, (2010) · Zbl 1189.76159
[21] Ding, H.; Spelt, PD., Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers, J Fluid Mech, 599, 341‒362, (2008) · Zbl 1151.76447
[22] Yue, P.; Zhou, C.; Feng, JJ., Sharp-interface limit of the Cahn-Hilliard model for moving contact lines, J Fluid Mech, 645, 279‒294, (2010) · Zbl 1189.76074
[23] Li, Z.; Lai, M.; He, G.; Zhao, H., An augmented method for free boundary problems with moving contact lines, Comput Fluids, 39, 1033‒1040, (2010) · Zbl 1242.76047
[24] Zhang, J.; Miksis, M.; Bankoff, S., Nonlinear dynamics of a two-dimensional viscous drop under shear flow, Phys Fluids, 18, (2006)
[25] Manservisi, S.; Scardovelli, R., A variational approach to the contact angle dynamics of spreading droplets, Comput Fluids, 38, 406‒424, (2009) · Zbl 1237.76145
[26] Muradoglu, M.; Tasoglu, S., A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls, Comput Fluids, 39, 615‒625, (2010) · Zbl 1242.76250
[27] Huang, H.; Liang, D.; Wetton, B., Computation of a moving drop/bubble on a solid surface using a front-tracking method, Commun Math Sci, 2, 535‒552, (2004) · Zbl 1161.76541
[28] Yamamoto, Y.; Ito, T.; Wakimoto, T.; Katoh, K., Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition, Int J Multiph Flow, 51, 22‒32, (2013)
[29] Luo, ZY.; Bai, BF., Dynamics of nonspherical compound capsules in simple shear flow, Phys Fluids, 28, (2016)
[30] Luo, ZY.; He, L.; Bai, BF., Deformation of spherical compound capsules in simple shear flow, J Fluid Mech, 775, 77‒104, (2015) · Zbl 1403.76199
[31] Bai, BF.; Luo, ZY.; Wang, SQ.; He, L.; Lu, TJ.; Xu, F., Inertia effect on deformation of viscoelastic capsules in microscale flows, Microfluid Nanofluid, 14, 817‒829, (2012)
[32] Qian, T.; Wang, X.; Sheng, P., Molecular scale contact line hydrodynamics of immiscible flows, Phys Rev E, 68, (2003)
[33] Peskin, CS., The immersed boundary method, Acta Numer, 11, 479‒517, (2003) · Zbl 1123.74309
[34] Huh, C.; Mason, SG., The steady movement of a liquid meniscus in a capillary tube, J Fluid Mech, 81, 401‒419, (1977)
[35] Ni, M-J.; Komori, S.; Morley, N., Projection methods for the calculation of incompressible unsteady flows, Numer Heat Trans B-Fund, 44, 533‒551, (2003)
[36] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid, (2001), Academic Press London · Zbl 0976.65106
[37] Li, Y.; Yun, A.; Lee, D.; Shin, J.; Jeong, D.; Kim, J., Three-dimensional volume-conserving immersed boundary model for two-phase fluid flows, Comput Method Appl M, 257, 36‒46, (2013) · Zbl 1286.76031
[38] Esmaeeli, A.; Tryggvason, G., Direct numerical simulations of bubbly flows. part 1. low Reynolds number arrays, J Fluid Mech, 377, 313‒345, (1998) · Zbl 0934.76090
[39] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W., A front-tracking method for the computations of multiphase flow, J Comput Phys, 169, 708‒759, (2001) · Zbl 1047.76574
[40] Unverdi, SO.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 25‒37, (1992) · Zbl 0758.76047
[41] Thompson, PA.; Brinckerhoff, W.; Robbins, MO., Microscopic studies of static and dynamic contact angles, J Adhes Sci Technol, 7, 535‒554, (1993)
[42] Cox, RG., The dynamics of the spreading of liquids on a solid surface. part 1. viscous flow, J Fluid Mech, 168, 169‒194, (1986) · Zbl 0597.76102
[43] Cox, RG., The dynamics of the spreading of liquids on a solid surface. part 2. surfactants, J Fluid Mech, 168, 195‒220, (1986) · Zbl 0597.76103
[44] Yamamoto, Y.; Higashida, S.; Tanaka, H.; Wakimoto, T.; Ito, T.; Katoh, K., Numerical analysis of contact line dynamics passing over a single wettable defect on a wall, Phys Fluids, 28, (2016)
[45] Hancock, MJ.; Sekeroglu, K.; Demirel, MC., Bioinspired directional surfaces for adhesion, wetting, and transport, Adv Funct Mater, 22, 2223-2234, (2012)
[46] Pitt, WG., Fabrication of a continuous wettability gradient by radio frequency plasma discharge, J Colloid Interf Sci, 133, 223-227, (1989)
[47] Kavousanakis, ME.; Colosqui, CE.; Papathanasiou, AG., Engineering the geometry of stripe-patterned surfaces toward efficient wettability switching, Colloids Surf A, 436, 309‒317, (2013)
[48] Bliznyuk, O.; Jansen, HP.; Kooij, ES.; Zandvliet, HJW.; Poelsema, B., Smart design of stripe-patterned gradient surfaces to control droplet motion, Langmuir, 27, 11238-11245, (2011)
[49] Yue, W.; Guo, Q.; Zhang, J.; Wang, G., 3D triangular mesh optimization in geometry processing for CAD, (Proceedings of the 2007 ACM symposium on solid and physical modeling, Beijing, China, (2007), ACM), 23-33
[50] Mari, JF.; Saito, JH.; Poli, G.; Zorzan, MR.; Levada, AL., Improving the neural meshes algorithm for 3D surface reconstruction with edge swap operations, (Proceedings of the 2008 ACM symposium on applied computing, Fortaleza, Brazil, (2008), ACM), 1236-1240
[51] Yu, Z.; Holst, MJ.; Mccammon, JA., High-fidelity geometric modeling for biomedical applications, Finite Elem Anal Des, 44, 715‒723, (2008)
[52] Page, DL.; Sun, Y.; Koschan, A.; Paik, J.; Abidi, MA., Normal vector voting: crease detection and curvature estimation on large, noisy meshes, Graph Models, 64, 199‒229, (2002) · Zbl 1038.68136
[53] Gao, Z.; Yu, Z.; Holst, M., Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation, Graph Models, 75, 23‒38, (2013)
[54] Khenner, M., Computation of the material indicator function near the contact line (in Tryggvason’s method), J Comput Phys, 200, 1‒7, (2004) · Zbl 1288.74064
[55] Brackbill, J.; Kothe, DB.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335‒354, (1992) · Zbl 0775.76110
[56] Sugiyama, K.; Sbragaglia, M., Linear shear flow past a hemispherical droplet adhering to a solid surface, J Eng Math, 62, 35‒50, (2007) · Zbl 1148.76018
[57] Li, X.; Pozrikidis, C., Shear flow over a liquid drop adhering to a solid surface, J Fluid Mech, 307, 167‒190, (1996) · Zbl 0880.76021
[58] Dimitrakopoulos, P., Deformation of a droplet adhering to a solid surface in shear flow: onset of interfacial sliding, J Fluid Mech, 580, 451‒466, (2007) · Zbl 1119.76022
[59] Ehrhard, P.; Davis, SH, Non-isothermal spreading of liquid drops on horizontal plates, J Fluid Mech, 229, 365-388, (1991) · Zbl 0850.76760
[60] Pivello, MR.; Villar, MM.; Serfaty, R.; Roma, AM.; Silveira-Neto, A., A fully adaptive front tracking method for the simulation of two phase flows, Int J Multiph Flow, 58, 72-82, (2014)
[61] Dupont, JB.; Legendre, D., Numerical simulation of static and sliding drop with contact angle hysteresis, J Comput Phys, 229, 2453-2478, (2010) · Zbl 1430.76159
[62] Park, JK.; Kang, KH., Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique, Phys Fluids, 24, (2012)
[63] Fang, C.; Hidrovo, C.; Wang, F.; Eaton, J.; Goodson, K., 3-D numerical simulation of contact angle hysteresis for microscale two phase flow, Int J Multiph Flow, 34, 690-705, (2008)
[64] Eral, HB.; Oh, JM., Contact angle hysteresis: a review of fundamentals and applications, Colloid Polym Sci, 291, 247-260, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.