×

Logarithmic vector fields and freeness of divisors and arrangements: new perspectives and applications. Abstracts from the workshop held January 24–30, 2021 (online meeting). (English) Zbl 1487.00025

Summary: The central topic of the workshop was the notion of logarithmic vector fields along a divisor in a smooth complex analytic or algebraic variety, i.e., the vector fields on the ambient variety tangent to the divisor. Following their introduction by K. Saito for the purpose of studying the universal unfolding of an isolated singularity, this fundamental object has been the focus of studies in a wide range of mathematical fields such as algebra, algebraic geometry, singularity theory, root systems, (geometric) representation theory, combinatorics, (toric) topology, or symplectic geometry. In the last few years the logarithmic vector field approach has seen some unexpected and striking advances and deep applications. The aim of the workshop was to provide reports and to share these various new developments in the field.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
32-06 Proceedings, conferences, collections, etc. pertaining to several complex variables and analytic spaces
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
32S22 Relations with arrangements of hyperplanes
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
14N20 Configurations and arrangements of linear subspaces
13D02 Syzygies, resolutions, complexes and commutative rings
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Abe, M. Barakat, M. Cuntz, T. Hoge, and H. Terao, The freeness of ideal subarrange-ments of Weyl arrangements, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 6, 1339-1348. · Zbl 1350.32028
[2] M. Cuntz, S. Elia, and J.-P. Labbé, Congruence normality of simplicial hyperplane arrange-ments via oriented matroids, 39 pp., available at arXiv:2009.14152.
[3] M. Cuntz and I. Heckenberger, Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015), 77-108. · Zbl 1358.20037
[4] M. Cuntz and P. Mücksch, Supersolvable simplicial arrangements, Adv. in Appl. Math. 107 (2019), 32-73. · Zbl 1492.52009
[5] M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete Comput. Geom. 48 (2012), no. 3, 682-701. · Zbl 1254.52009
[6] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. · Zbl 0238.20034
[7] B. Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Math. Contemp. 2 (2009), no. 1, 25 pp. · Zbl 1177.51020
[8] E. Melchior,Über Vielseite der projektiven Ebene, Deutsche Math. 5 (1941), 461-475. · Zbl 0025.09105
[9] N. Reading, Lattice theory of the poset of regions, Lattice theory: special topics and appli-cations. Volume 2, Basel: Birkhäuser/Springer, 2016, pp. 399-487 (English). · Zbl 1404.06004
[10] A. M. Bigatti, E. Palezzato, and M. Torielli. Extremal behavior in sectional matrices. Journal of Algebra and its Applications, 18(3), 2019. · Zbl 1441.13041
[11] A. M. Bigatti, E. Palezzato, and M. Torielli. New characterizations of freeness for hyperplane arrangements. Journal of Algebraic Combinatorics, 51(2):297-315, 2020. · Zbl 1470.13045
[12] T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi, and J. Watanabe. The Lefschetz properties, volume 2080 of Lecture Notes in Mathematics. Springer, 2013. · Zbl 1284.13001
[13] T. Harima and A. Wachi. Generic initial ideals, graded Betti numbers, and k-Lefschetz properties. Communications in Algebra, 37(11):4012-4025, 2009. · Zbl 1187.13001
[14] J.C. Migliore and U. Nagel. Survey article: a tour of the weak and strong Lefschetz proper-ties. Journal of Commutative Algebra, 5(3):329-358, 2013. · Zbl 1285.13002
[15] E. Palezzato and M. Torielli. Free hyperplane arrangements over arbitrary fields. Journal of Algebraic Combinatorics, 52(2):237-249, 2020. · Zbl 1458.52011
[16] E. Palezzato and M. Torielli. k-Lefschetz properties, sectional matrices and hyperplane ar-rangements. arXiv:2003.06294. · Zbl 1476.14021
[17] E. Palezzato and M. Torielli. Lefschetz properties and hyperplane arrangements. Journal of Algebra, 555:289-304, 2020. · Zbl 1445.14073
[18] Paolo Aluffi and Matilde Marcolli, Feynman motives and deletion-contraction relations, Contemp. Math. 538, (2011), 21-64. · Zbl 1221.81076
[19] Dori Bejleri and Matilde Marcolli, Quantum field theory over F 1 , J. Geom. Phys. 69, (2013), 40-59. · Zbl 1278.81130
[20] Prakash Belkale and Patrick Brosnan, Matroids, motives, and a conjecture of Kontsevich, Duke Math. J. 116, (2003), 147-188. · Zbl 1076.14026
[21] A. Bia lynicki-Birula, Some theorems on actions of algebraic groups, Ann of Math. 98, (1973), 480-497. · Zbl 0275.14007
[22] Spencer Bloch and Hélène Esnault and Dirk Kreimer, On motives associated to graph poly-nomials, Comm. Math. Phys. 267, (2006), 181-225. · Zbl 1109.81059
[23] Francis Brown, Periods and Feynman amplitudes, arXiv eprint 1512.09265, (2015).
[24] Francis Brown, Feynman amplitudes, coaction principle, and cosmic Galois group, Com-mun. Number Theory and Physics 11, (2017), 453-556. · Zbl 1395.81117
[25] Graham Denham and Mathias Schulze and Uli Walther, Matroid connectivity and singular-ities of configuration hypersurfaces, Lett. Math. Phys. 111, (2021). · Zbl 1509.81478
[26] Graham Denham and Delphine Pol and Mathias Schulze and Uli Walther, Graph hypersur-faces with torus action and a conjecture of Aluffi, Commun. Number Theory and Physics (to appear), (2021). · Zbl 1470.14016
[27] Matilde Marcolli, Feynman motives, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2010), xiv+220pp. · Zbl 1192.14001
[28] Stefan Müller-Stach and Benjamin Westrich, Motives of graph hypersurfaces with torus operations, Transform. Groups 20, (2015), 167-182. · Zbl 1343.14006
[29] Eric Patterson, On the singular structure of graph hypersurfaces, Commun. Number Theory Phys. 4, (2010), 659-708. · Zbl 1244.14035
[30] De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Math. (N.S.), 1:3, 459-494 (1995). · Zbl 0842.14038
[31] Dotsenko, V.: Homotopy invariants for M 0,n via Koszul duality. ArXiv preprint arXiv:1902.06318.
[32] Dotsenko, V., Khoroshkin, A.: Quillen homology for operads via Gröbner bases. Doc. Math. 18, 707-747 (2013). · Zbl 1278.18018
[33] Etingof, P., Henriques, A.:, Kamnitzer, J., Rains, E. M.: The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points. Ann. of Math. (2) 171:2, 731-777 (2010). · Zbl 1206.14051
[34] Feichtner, E.-M., Yuzvinsky, S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155:3, 515-536 (2004). · Zbl 1083.14059
[35] Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Amer. Math. Soc. 330:2, 545-574 (1992). · Zbl 0768.14002
[36] Losev, A., Manin, Y.: Extended modular operad. In: “Frobenius manifolds”, 181-211, Aspects Math., E36, Friedr. Vieweg, Wiesbaden, 2004. · Zbl 1080.14066
[37] Manin, Y.: Moduli stacks L g,S . Mosc. Math. J. 4:1, 181-198 (2004). · Zbl 1082.14057
[38] Petersen, D.: Koszulness of the cohomology ring of moduli of stable genus zero curves, MathOverflow question https://mathoverflow.net/q/99613, 2012-06-15.
[39] Polishchuk, A., Positselski, L.: Quadratic algebras. University Lecture Series, 37. American Mathematical Society, Providence, RI, 2005. xii+159 pp. · Zbl 1145.16009
[40] Readdy, M. A.: The pre-WDVV ring of physics and its topology. Ramanujan J. 10:2, 269-281 (2005). · Zbl 1094.13036
[41] Singh, D.: The moduli space of stable N -pointed curves of genus zero. Ph. D. Thesis, University of Sheffield (2004).
[42] T. Abe, Double points of free projective line arrangements, Int. Math. Res. Notices (2020).
[43] T. Abe, A. Dimca, On complex supersolvable line arrangements, J. Algebra 552 (2020) 38-51. · Zbl 1436.14053
[44] B. Anzis, Ş.O. Tohǎneanu, On the geometry of real or complex supersolvable line arrange-ments, J. Combin. Theory Ser. A 140 (2016) 76-96. · Zbl 1335.52031
[45] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu, T. Szemberg, Negative curves on symmetric blowups of the projective plane, resurgences and Waldschmidt con-stants. Int. Math. Res. Notices (2019) 7459-7514. · Zbl 1477.14013
[46] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg, Bounded Negativity and Arrangements of Lines, Int. Math. Res. Notices (2015) 9456-9471. · Zbl 1330.14007
[47] Th. Bauer, B. Harbourne, A.L. Knutsen, A. Küronya, S. Müller-Stach, X. Roulleau, T. Szem-berg, Negative curves on algebraic surfaces, Duke Math. J. 162,:10 (2013) 1877-1894. · Zbl 1272.14009
[48] M. Cuntz, Simplicial arrangements with up to 27 lines, Discrete & Computational Geometry 48 (2012) 682-701. · Zbl 1254.52009
[49] M. Cuntz, A greedy algorithm to compute arrangements of lines in the projective plane, preprint 2020 (arXiv:2006.14431).
[50] B. Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Mathematica Contemporanea 2 (2009) 1-25. · Zbl 1177.51020
[51] K. Hanumanthu, B. Harbourne, Real and complex supersolvable line arrangements in the projective plane, J. Alg. Combinatortics (2020). · Zbl 1475.14107
[52] F. Klein.Über die Transformation siebenter Ordnung der elliptischen Functionen. Math. Ann. (14) (1879) 428-471. · JFM 11.0297.01
[53] X. Roulleau, Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Internat. Math. Res. Notices (2017) 2480-2496. · Zbl 1405.14018
[54] A. Wiman. Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Ann.(48) (1896) 195-240. · JFM 30.0600.01
[55] O.A. Chalykh, A.P. Veselov, Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys. V. 126, Nu. 3 (1990), pp. 597-611. · Zbl 0746.47025
[56] M. Feigin, A.P. Veselov, Quasi-invariants of Coxeter groups and m-harmonic polynomials, IMRN, (2002) 10, pp. 521-545 · Zbl 1009.20044
[57] P. Etingof, V. Ginzburg, On m-quasi-invariants of a Coxeter group, Mosc. Math. J. 2 (2002), no. 3, pp. 555-566. · Zbl 1028.81027
[58] T. Abe, H. Terao, A. Wakamiko, Equivariant multiplicities of Coxeter arrangements and invariant bases, Adv. Math. 230 (2012), no.4-6, pp. 2364-2377. · Zbl 1267.52019
[59] T. Abe, N. Enomoto, M. Feigin, M. Yoshinaga, Free reflection multi-arrangements and quasi-invariants. In preparation.
[60] Yu. Berest, O. Chalykh, Quasi-invariants of complex reflection groups, Compos. Math. 147 (2011), no. 3, pp. 965-1002. · Zbl 1233.16018
[61] T. Hoge, T. Mano, G. Röhrle, C. Stump, Freeness of multi-reflection arrangements via primitive vector fields, Advances in Math. 350 (2019), 63-96. · Zbl 1468.20075
[62] P. Etingof, E. Rains, with an appendix by M. Feigin, On Cohen-Macaulayness of algebras generated by generalized power sums, Comm. Math. Phys., 347(1), (2016), pp. 163-182. · Zbl 1357.13016
[63] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math. 157 (2004), no. 2, pp. 449-454. · Zbl 1113.52039
[64] T. Abe, H.Terao, The freeness of Shi-Catalan arrangements, European J. Combin., 32, (2011), no. 8, pp. 1191-1198. · Zbl 1235.52035
[65] C. Bibby, N. Gadish, Combinatorics of orbit configuration spaces, Int. Math. Res. Not. IMRN (2020), rnaa296.
[66] C. Bibby, N. Gadish, A generating function approach to new representation stability phe-nomena in orbit configuration spaces, arXiv:1911.02125 (2019), preprint.
[67] T. Church, J. S. Ellenberg, B. Farb. FI-modules and stability for representations of sym-metric groups. Duke Math. J. 164 (2015), no. 9, 1833-1910. · Zbl 1339.55004
[68] T. A. Dowling. A class of geometric lattices based on finite groups. J. Combinatorial Theory Ser. B 14 (1973), 61-86. · Zbl 0247.05019
[69] J. Miller, J. C. H. Wilson. Higher order representation stability and ordered configuration spaces of manifolds. Geom. Topol. 23 (2019), no. 5, 2519-2591. · Zbl 1427.55011
[70] R. P. Stanley. Supersolvable lattices. Algebra Universalis 2 (1972), 197-217. · Zbl 0256.06002
[71] M. A. Xicoténcatl. Orbit Configuration Spaces, Infinitesimal Braid Relations in Homology and Equivariant Loop Spaces. PhD Thesis, University of Rochester. 1997. 116 pp. ProQuest LLC, Ann Arbor, MI.
[72] E. Brieskorn, Die Fundamental Gruppe des Raumes des Reguläen Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57-61. · Zbl 0204.56502
[73] E. Brieskorn and K. Saito, Artin Gruppen und Coxeter Gruppen, Invent. Math., 17 (1972), 245-271. · Zbl 0243.20037
[74] P. Deligne, Les immeubles des groupes de tresse généralizé, Invent. Math., 17 (1972), 273-302. · Zbl 0238.20034
[75] T. Ishibe and K. Saito Elliptic Artin monoids and Homotopy groups In preparation.
[76] H. van der Lek The homotopy type of complex hyperplane complements, Doctor Thesis, Nijmegen (1983).
[77] E. Looijenga Invariant theory for generalized root systems, Invent. Math., 61 (1980), 1-32. · Zbl 0436.17005
[78] K. Saito Period mapping associated to a primitive form Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1231-1264. · Zbl 0539.58003
[79] K. Saito Extended affine root sytem (I) Coxeter transformation, (II) Flat structure Publ. RIMS, Kyoto Univ. 21 (1985) 75-179, Publ. RIMS, Kyoto Univ. 26 (1990) 15-78. · Zbl 0573.17012
[80] K. Saito Polyhedron dual to the Weyl chamber Decomposition: A Précis Publ. RIMS, Kyoto Univ. 40 (2004), 1337-1384 · Zbl 1086.14048
[81] Y. Saito and M. Shiota On Hecke Algebras Associated with Elliptic Root Systems and the Double Affine Hecke Algebras, Publ. RIMS. 45 (2009), 845-905. · Zbl 1246.20004
[82] K. Saito and Y. Saito Elliptic Artin groups In preparation.
[83] K. Saito and T. Takebayashi Extended affine root systems. III. Elliptic Weyl groups Publ. Res. Inst. Math. Sci. 33 (1997), no. 2, 301-329. · Zbl 0901.20016
[84] K. A. Brandt and H. Terao. Free arrangements and relation spaces. Discrete Comput. Geom., 12(1):49-63, 1994. · Zbl 0802.52010
[85] Michael Falk and Richard Randell. On the homotopy theory of arrangements. In Complex analytic singularities, volume 8 of Adv. Stud. Pure Math., pages 101-124. North-Holland, Amsterdam, 1987. · Zbl 0636.14003
[86] Jessica Sidman and Audrey St. John. The rigidity of frameworks: theory and applications. Notices Amer. Math. Soc., 64(9):973-978, 2017. · Zbl 1379.52024
[87] Neil L. White and Walter Whiteley. The algebraic geometry of stresses in frameworks. SIAM J. Algebraic Discrete Methods, 4(4):481-511, 1983. · Zbl 0542.51022
[88] Walter Whiteley. A matroid on hypergraphs, with applications in scene analysis and geom-etry. Discrete Comput. Geom., 4(1):75-95, 1989. · Zbl 0656.05047
[89] Sergey Yuzvinsky. The first two obstructions to the freeness of arrangements. Trans. Amer. Math. Soc., 335(1):231-244, 1993. · Zbl 0768.05019
[90] Günter M. Ziegler. Combinatorial construction of logarithmic differential forms. Adv. Math., 76(1):116-154, 1989. · Zbl 0725.05032
[91] T. Abe, D. Suyama, A basis construction of the extended Catalan and Shi arrangements of the type A 2 , Journal of Algebra, 493 (2018), 20-35. · Zbl 1377.32016
[92] C. A. Athanasiadis, On free deformations of the braid arrangement. Eur. J. Comb. 19 (1998) 7-18. · Zbl 0898.52008
[93] J. Bandlow, G. Musiker, A new characterization for the m-quasiinvariants of Sn and explicit basis for two row hook shapes. J. Combin. Theory Ser. A 115 (2008), no. 8, 1333-1357. · Zbl 1170.05057
[94] P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings. Discrete Comput. Geom. 15 (1996), no. 3, 307-340. · Zbl 0853.52013
[95] G. Felder, A. P. Veselov, Action of Coxeter groups on m-harmonic polynomials and Knizhnik-Zamolodchikov equations. Mosc. Math. J. 3 (2003), no. 4, 1269-1291. · Zbl 1056.32013
[96] R. Gao, D. Pei, H. Terao, The Shi arrangement of the type D ℓ , Proc. Japan Acad. Ser. A Math. Sci. 88 (3) (2012) 41-45. · Zbl 1242.32015
[97] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 27 (2) (1980) 265-291. · Zbl 0496.32007
[98] D. Suyama, H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. Lond. Math. Soc. 44 (3) (2012) 563-570. · Zbl 1251.32022
[99] D. Suyama, A basis construction for the Shi arrangement of the type B ℓ or C ℓ , Comm. Algebra 43 (4) (2015) 1435-1448. · Zbl 1315.32006
[100] D. Suyama, M. Yoshinaga, The primitive derivation and discrete integrals. arXiv:2009.13710 · Zbl 1462.52040
[101] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math. 157 (2004), no. 2, 449-454. · Zbl 1113.52039
[102] Verifying Terao’s freeness conjecture for small arrangements in arbitrary characteristic Lukas Kühne (joint work with Mohamed Barakat) References
[103] T. Abe, M. Cuntz, H. Kawanoue, and T. Nozawa, Non-recursive freeness and non-rigidity, Discrete Math. 339 (2016), no. 5, 1430-1449. MR 3475556 · Zbl 1338.52023
[104] Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao’s freeness conjecture, (arXiv:1907.01073), 2019. · Zbl 1465.05025
[105] Mohamed Barakat and Lukas Kühne, matroids split public -a database collection for rank 3 integrally split simple matroids, 2019, (https://homalg-project.github.io/pkg/ MatroidGeneration).
[106] Alexandru Dimca, Denis Ibadula, and Anca Mȃcinic, Freeness for 13 lines arrangements is combinatorial, Discrete Mathematics 342 (2019), no. 8, 2445 -2453. · Zbl 1418.52009
[107] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, 1995. MR MR1322960 (97a:13001) · Zbl 0819.13001
[108] Masahiko Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126-134. MR 2105827 · Zbl 1071.52019
[109] G. Bolondi and J. Migliore, The structure of an even liaison class, Trans. Amer. Math. Soc. 316 (1989), 1-37. · Zbl 0689.14019
[110] G. Bolondi and J. Migliore, The Lazarsfeld-Rao property on an arithmetically Gorenstein variety, manuscripta math. 78 (1993), 347-368. · Zbl 0813.14035
[111] A.V. Geramita, B. Harbourne and J. Migliore, Star configurations in P n , J. Algebra 376 (2013), 279-299. · Zbl 1284.14073
[112] A.V. Geramita and J. Migliore, A generalized liaison addition, J. Algebra 163 (1994), 139-164. · Zbl 0798.14026
[113] R. Hartshorne, J. Migliore and U. Nagel, Liaison addition and the structure of a Gorenstein liaison class, J. Algebra 319 (2008), 3324-3342. · Zbl 1154.14036
[114] C. Huneke and B. Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geom. 2 (1993), no. 3, 487-505. · Zbl 0808.14041
[115] J. Kleppe, J. Migliore, R. Miró-Roig. U. Nagel and C. Peterson, “Gorenstein liaison, com-plete intersection liaison invariants and unobstructedness,” Memoirs of the Amer. Math. Soc. volume 154, number 732 (2001). · Zbl 1006.14018
[116] R. Lazarsfeld and A.P. Rao, Linkage of general curves of large degree, Algebraic geometry -open problems (Ravello, 1982), 267-289, Lecture Notes in Math., 997, Springer, Berlin, 1983. · Zbl 0532.14017
[117] J. Migliore, U. Nagel and H. Schenck, Schemes supported on the singular locus of a hyper-plane arrangement in P n , http://arxiv.org/abs/1908.03939. · Zbl 1478.14080
[118] M. Mustaţǎ and H. Schenck, The module of logarithmic p-forms of a locally free arrange-ment, J. Algebra 241 (2001), 699-719. · Zbl 1047.14007
[119] P. Schwartau, “Liaison Addition and Monomial Ideals” Ph.D. thesis, Brandeis University, 1982. References
[120] A. G. Aleksandrov. Nonisolated Saito singularities. Math. USSR Sbornik, 65(2):561-574, 1990. · Zbl 0684.32010
[121] Ragnar-Olaf Buchweitz, Eleonore Faber, and Colin Ingalls. Noncommutative resolutions of discriminants. In Representations of algebras, volume 705 of Contemp. Math., pages 37-52. Amer. Math. Soc., Providence, RI, 2018. · Zbl 1401.14079
[122] Ragnar-Olaf Buchweitz, Eleonore Faber, and Colin Ingalls. A McKay correspondence for reflection groups. Duke Math. J., 169(4):599-669, 2020. · Zbl 1451.14043
[123] R.-O. Buchweitz. From platonic solids to preprojective algebras via the McKay correspon-dence. Oberwolfach Jahresbericht, pages 18-28, 2012.
[124] D. Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc., 260(1):35-64, 1980. · Zbl 0444.13006
[125] S. May. Non-commutative Resolutions for the Discriminant of the Complex Reflection group G(m, p, 2). preprint, 2021.
[126] P. Orlik and H. Terao. Arrangements of hyperplanes, volume 300 of Grundlehren der Math-ematischen Wissenschaften. Springer-Verlag, Berlin, 1992. · Zbl 0757.55001
[127] K. Saito. Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, 27(2):265-291, 1980. · Zbl 0496.32007
[128] H. Terao. The exponents of a free hypersurface. In Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pages 561-566. Amer. Math. Soc., Provi-dence, RI, 1983. References · Zbl 0518.32005
[129] D. Bath, Bernstein-Sato varieties and annihilation of powers, Trans. Amer. Math. Soc. 373 no. 12 (2020), 8543-8582. · Zbl 1460.14048
[130] D. Bath, Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements, J. Singul. 20 (2020), 165-204. · Zbl 1457.14039
[131] F. J. Castro-Jiménez and J. M. Ucha, Free divisors and duality for D-modules, Tr. Mat. Inst. Steklova, 238 (Monodromiya v Zadachakh Algebr. Geom. i Differ. Uravn.) (2002), 97-105. · Zbl 1039.32011
[132] L. Ein, R. Lazarsfeld, K. Smith, D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469-506. · Zbl 1061.14003
[133] P. Maisonobe, L’idéal de Bernstein d’un arrangement libre d’hyperplans linéaires, arXiv: 1610.03356 (2016).
[134] D. Mond, M. Schulze, Adjoint divisors and free divisors, J. Singul. 7 (2013), 253-274. · Zbl 1292.32014
[135] L. Narváez Macarro, A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors, Adv. Math. 281 (2015), 1242-1273. · Zbl 1327.14090
[136] M. Saito, Bernstein-Sato polynomials of hyperplane arrangements, Selecta Math. (N.S.) 22(4) (2016), 2017-2057. · Zbl 1432.32038
[137] M. Saito, Multiplier ideals, b-function, and spectrum of a hypersurface singularity, Compos. Math. 143 (2007), 1050-1068. · Zbl 1120.32018
[138] U. Walther, Survey on the D-module f s , Commutative algebra and noncommutative alge-braic geometry Vol. I (2015), 391-430. · Zbl 1359.14019
[139] U. Walther, The Jacobian module, the Milnor fiber, and the D-module generated by f s , Invent. Math. 207(3) (2017), 1239-1287. · Zbl 1370.14022
[140] M. Yoshinaga, personal communication. References
[141] C. A. Athanasiadis, The Largest Intersection Lattice of a Discriminantal Arrangement, Contributions to Algebra and Geometry, Vol. 40, No. 2 (1999). · Zbl 0965.52008
[142] M. Bayer, K. Brandt, Discriminantal arrangements, fiber polytopes and formality, J. Alge-braic Comb., 6 (1997), pp. 229-246. · Zbl 0884.52013
[143] H. Crapo, The combinatorial theory of structures, in: “Matroid theory” (A. Recski and L. Locaśz eds.), Colloq. Math. Soc. János Bolyai Vol. 40, pp. 107-213, North-Hokkand, Amsterdam-New York, 1985. · Zbl 0593.51013
[144] H. Crapo and G.C. Rota, The resolving bracket. In Invariant methods in discrete and com-putational geometry (N. White ed.), pp. 197-222, Kluwer Academic Publisher, Dordrecht 1995. · Zbl 0927.68104
[145] M. Falk, A note on discriminantal arrangements, Proc. Amer. Math. Soc., 122 (4) (1994), pp. 1221-1227. · Zbl 0815.52013
[146] M. Kapranov, V. Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra, 92 (3) (1994), pp. 241-267. · Zbl 0791.18010
[147] T.Kohno, Integrable connections related to Manin and Schechtman’s higher braid groups, Illinois J. Math. 34, no. 2, (1990) pp. 476-484. · Zbl 0748.57008
[148] A. Libgober and S. Settepanella, Strata of discriminantal arrangements, Journal of Singu-larities Volume in honor of E. Brieskorn 18 (2018). · Zbl 1404.52025
[149] Yu. I. Manin and V. V. Schechtman, Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders, Advanced Studies in Pure Mathematics 17, (1989) Algebraic Number Theory in honor K. Iwasawa pp. 289-308. · Zbl 0759.20002
[150] M. Perling, Divisorial cohomology vanishing on toric varieties, Doc. Math., 16 (2011), pp. 209-251. · Zbl 1226.14063
[151] S. Sawada, S. Settepanella and S. Yamagata, Discriminantal arrangement, 3×3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n), Comptes Rendus Mathema-tique, Ser. I 355, (2017), pp.1111-1120. · Zbl 1379.52027
[152] S. Sawada, S. Settepanella and S. Yamagata, Pappus’s Theorem in Grassmannian Gr(3, C n ), Ars Mathematica Contemporanea, Vol 16, No 1, (2019), pp. 257-276. · Zbl 1420.52029
[153] G. d’Antonio, E. Delucchi, A Salvetti Complex for Toric Arrangements and its Fundamental Group, International Mathematics Research Notices 15 (2012), 3535-3566. · Zbl 1254.52010
[154] A. D’Alì, E. Delucchi, Stanley-Reisner rings for symmetric simplicial complexes, G-semimatroids and Abelian arrangements, arXiv:1804.07366, 42 pp.
[155] E. Delucchi, S. Riedel, Group actions on semimatroids, Adv. Appl. Math. 95 (2018), 199-270. · Zbl 1431.06001
[156] E. Delucchi, K. Knauer, Finitary affine oriented matroids, arXiv:2011.13348, 44 pp.
[157] E. Delucchi, R. Pagaria, The homotopy type of elliptic arrangements, arXiv:1911.02905, to appear in Algebraic & Geometric Topology. · Zbl 07394080
[158] M. d’Adderio, F. Callegaro, E. Delucchi, L. Migliorini, R. Pagaria, Orlik-Solomon type pre-sentations for the cohomology algebra of toric arrangements, Trans. Amer. Math. Soc. 373 (2020), 1909-1940. · Zbl 1433.14048
[159] R. Pagaria, Two examples of toric arrangements, J. Comb. Theory ser. A, 167 (2019), 389-402. · Zbl 1429.32044
[160] M. Salvetti, Topology of the complement of real hyperplanes in C n , Inv. Math. 88 (1987), 603-618. · Zbl 0594.57009
[161] C. A. Athanasiadis, Characteristic polynomials of subspace arrangements and finite fields, Adv. Math. 122(2) (1996), 193-233. · Zbl 0872.52006
[162] A. U. Ashraf, T. N. Tran, and M. Yoshinaga, Eulerian polynomials for subarrangements of Weyl arrangements, Adv. Appl. Math. 120 (2020), 102064. · Zbl 1447.52026
[163] T. N. Tran and A. Tsuchiya, Worpitzky-compatible subarrangements of braid arrangements and cocomparability graphs, preprint (2020). (https://arxiv.org/abs/2007.01248) · Zbl 1472.52037
[164] M. Yoshinaga, Worpitzky partitions for root systems and characteristic quasi-polynomials, Tohoku Math. J. 70(1) (2018), 39-63. · Zbl 1390.52026
[165] Federico Ardila, Graham Denham, and June Huh, Lagrangian geometry of matroids, arXiv:2004.13116.
[166] Paolo Aluffi, Limits of Chow groups, and a new construction of Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson. Part 2, 915-941. MR 2282409 · Zbl 1110.14010
[167] , Grothendieck classes and Chern classes of hyperplane arrangements, Int. Math. Res. Not. IMRN (2013), no. 8, 1873-1900. MR 3047491 · Zbl 1312.14020
[168] D. Cohen, G. Denham, M. Falk, and A. Varchenko, Critical points and resonance of hyper-plane arrangements, Canad. J. Math. 63 (2011), no. 5, 1038-1057. MR 2866070 · Zbl 1228.32028
[169] Graham Denham, Mehdi Garrousian, and Mathias Schulze, A geometric deletion-restriction formula, Adv. Math. 230 (2012), no. 4-6, 1979-1994. MR 2927361 · Zbl 1317.52032
[170] Eva-Maria Feichtner and Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155 (2004), no. 3, 515-536. MR 2038195 · Zbl 1083.14059
[171] June Huh and Bernd Sturmfels, Likelihood geometry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 63-117. MR 3329087 · Zbl 1328.14004
[172] June Huh, The maximum likelihood degree of a very affine variety, Compos. Math. 149 (2013), no. 8, 1245-1266. MR 3103064 · Zbl 1282.14007
[173] Lucía López de Medrano, Felipe Rincón, and Kristin Shaw, Chern-Schwartz-MacPherson cycles of matroids, Proc. Lond. Math. Soc. (3) 120 (2020), no. 1, 1-27. MR 3999674 · Zbl 1454.14013
[174] Hiroaki Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159-179. MR 608532 (82e:32018b) References · Zbl 0437.51002
[175] T. Abe, Plus-one generated and next to free arrangements of hyperplanes. Int. Math. Res. Not. IMRN, https://doi.org/10.1093/imrn/rnz099. · Zbl 1495.32072 · doi:10.1093/imrn/rnz099
[176] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and configurations of points with an unusual geometric property, Com-positio Math. 154: 2150 -2194, 2018. · Zbl 1408.14174
[177] A. Dimca. Unexpected curves in P 2 , line arrangements, and minimal degree of Jacobian relations, arXiv:1911.07703.
[178] A. Dimca and G. Sticlaru. Free and Nearly Free Curves vs. Rational Cuspidal Plane Curves, Publ. Res. Inst. Math. Sci. 54(1): 163 -179, 2018. · Zbl 1391.14057
[179] G. Malara, P. Pokora, and H. Tutaj-Gasińska. On 3-syzygy and unexpected plane curves, to appear in Geometriae Dedicata. · Zbl 1477.14087
[180] G. Denham, M. Garrousian and Ş. Tohǎneanu, Modular decomposition of the Orlik-Terao algebra, Ann. Comb. 18 (2014), 289-312. · Zbl 1300.52019
[181] T. Hoge and G. Röhrle, Supersolvable reflection arrangements, Proc. Amer. Math. Soc. 142 (2014), 3787-3799. · Zbl 1331.20050
[182] M. Jambu and H. Terao, Free arrangements of hyperplanes and supersolvable lattices, Ad-vances in Math. 52 (1984), 248-258. · Zbl 0575.05016
[183] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin-Heidelberg-New York 1992. · Zbl 0757.55001
[184] H. Schenck, Elementary modifications and line configurations in P 2 , Commentarii Mathe-matici Helvetici 78 (2003), 447-462. · Zbl 1033.52018
[185] Ş. Tohǎneanu, Free arrangements with low exponents. The latest version (2020) is available at arXiv: 1707.07091.
[186] S. Yuzvinsky, First two obstructions to the freeness of arrangements, Trans. Amer. Math. Soc. 335 (1993), 231-244. · Zbl 0768.05019
[187] T. Abe, Projective dimensions of hyperplane arrangements, ArXiv e-prints (2020), arXiv:2009.04101.
[188] A. Grothendieck, Local cohomology, Lecture notes by R. Hartshorne, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. · Zbl 0185.49202
[189] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. · Zbl 0126.16801
[190] P. Mücksch, On Yuzvinsky’s lattice sheaf cohomology for hyperplane arrangements, ArXiv e-prints (2020), arXiv:2008.13700.
[191] M. Mustaţǎ and H. K. Schenck, The module of logarithmic p-forms of a locally free arrange-ment, J. Algebra 241 (2001), no. 2, 699-719. MR 1843320 · Zbl 1047.14007
[192] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften, Springer, 1992. · Zbl 0757.55001
[193] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265-291. · Zbl 0496.32007
[194] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197-278. · Zbl 0067.16201
[195] L. Solomon and H. Terao, A formula for the characteristic polynomial of an arrangement, Adv. in Math. 64 (1987), no. 3, 305-325. MR 888631 · Zbl 0625.05001
[196] H. Terao, Arrangements of hyperplanes and their freeness I, J. Fac. Sci. Univ. Tokyo 27 (1980), 293-320. · Zbl 0509.14006
[197] , Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159-179. MR 608532 · Zbl 0437.51002
[198] M. Yoshinaga, Freeness of hyperplane arrangements and related topics, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 2, 483-512. · Zbl 1295.14049
[199] S. Yuzvinsky, Cohomology of local sheaves on arrangement lattices, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1207-1217. · Zbl 0758.32014
[200] , The first two obstructions to the freeness of arrangements, Trans. Amer. Math. Soc. 335 (1993), no. 1, 231-244. · Zbl 0768.05019
[201] , Free and locally free arrangements with a given intersection lattice, Proc. Amer. Math. Soc. 118 (1993), no. 3, 745-752. · Zbl 0797.52009
[202] T. Abe, Plus-one generated and next to free arrangements of hyperplanes, Int. Math. Res. Not.. DOI:10.1093/imrn/rnz099 · Zbl 1495.32072 · doi:10.1093/imrn/rnz099
[203] A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48, 39-64 (2000). · Zbl 1076.14534
[204] W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Ad-vanced Mathematics. Cambridge University Press, Cambridge, 1993. · Zbl 0788.13005
[205] M. Chardin, Applications of some properties of the canonical module in computational projective algebraic geometry. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). J. Symbolic Comput. 29 (2000), 527-544. · Zbl 0982.14034
[206] D. Cox, S. Katz, Mirror symmetry and algebraic geometry. Mathematical Surveys and Mono-graphs, 68. American Mathematical Society, (1999). · Zbl 0951.14026
[207] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-2 -A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2019).
[208] A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math. 158, 473-507 (2003). · Zbl 1068.32019
[209] A. Dimca, On the syzygies and Hodge theory of nodal hypersurfaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 6, 87-101 (2017). · Zbl 1371.14012
[210] A. Dimca, Syzygies of Jacobian ideals and defects of linear systems, Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 191-203. · Zbl 1299.14001
[211] A. Dimca, R. Gondim, G. Ilardi: Higher order Jacobians, Hessians and Milnor algebras, Collectanea Mathematica DOI: 10.1007/s13348-019-00266-1 · Zbl 1448.13003 · doi:10.1007/s13348-019-00266-1
[212] A. Dimca, D. Ibadula, A. Mȃcinic: Numerical invariants and moduli spaces for line arrange-ments, arXiv:1609.06551, Osaka J. Math. (to appear)
[213] A. Dimca, M. Saito, Graded Koszul cohomology and spectrum of certain homogeneous polynomials, arXiv:1212.1081v3.
[214] A. Dimca, G. Sticlaru, Hessian ideals of a homogeneous polynomial and generalized Tjurina algebras, Documenta Math. 20 (2015) 689-705. · Zbl 1342.14093
[215] A. Dimca, G. Sticlaru, Free and nearly free surfaces in P 3 , Asian J. Math. 22 (2018), 787-810. · Zbl 1402.14059
[216] L. Ein, R. Lazarsfeld, K. Smith, D. Varolin, Jumping coefficients of multiplier ideals. Duke Math. J. 123, 469-506 (2004). · Zbl 1061.14003
[217] D. Eisenbud, Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.With a view toward algebraic geometry. · Zbl 0819.13001
[218] D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra, Graduate Texts in Mathematics, Vol. 229, Springer 2005. · Zbl 1066.14001
[219] D. Eisenbud, D. Grayson, M. Stillman, Macaulay 2: a software system for algebraic geometry and commutative algebra, http://www.math.uiuc.edu/Macaulay2
[220] P. Griffiths, On the period of certain rational integrals I, II. Ann. Math. 90, 460-541 (1969). · Zbl 0215.08103
[221] T. Gulliksen, O. Negȧrd, Un complexe résolvant pour certains idéaux déterminantiels, C. R. Acad. Sci. Paris, 274, A16-A18 (1972). · Zbl 0238.13015
[222] T. Józefiak, Ideals generated by minors of a symmetric matrix, Comment. Math. Helv. 53, 595-607 (1978). · Zbl 0398.13009
[223] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30, 202-237 (1978). · Zbl 0394.14022
[224] M. Mustata, H. Schenck, The module of logarithmic p-forms of a locally free arrangement. J. Algebra 241, 699-719 (2001). · Zbl 1047.14007
[225] L. L. Rose, H. Terao, A free resolution of the module of logarithmic forms of a generic arrangement, J. Algebra 136 (1991), 376-400. · Zbl 0732.13010
[226] E. Sernesi, The local cohomology of the Jacobian ring, Documenta Mathematica, 19 (2014), 541-565. · Zbl 1314.14089
[227] S. Spodzieja, On some property of the Jacobian of a homogeneous polynomial mapping, Bull. Soc. Sci. Lett. Lodz 39, no. 5, 1-6 (1989). · Zbl 0743.13012
[228] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. Invent. Math. 63, 159-179 (1981). · Zbl 0437.51002
[229] D. van Straten, T. Warmt, Gorenstein duality for one-dimensional almost complete intersections-with an application to non-isolated real singularities, Math. Proc.Cambridge Phil. Soc.158, 249-268, (2015). · Zbl 1371.14006
[230] A. Szanto, with an appendix by Marc Chardin, Solving overdetermined systems by the subresultant method. J. Symbolic Computation 43, 46-74 (2008). · Zbl 1132.13312
[231] W. Vasconcelos, The top of a system of equations. Boletin de la Sociedad Matematica Mexicana, Vol. 37, 549-556 (1992). · Zbl 0838.13013
[232] U. Walther, The Jacobian module, the Milnor fiber, and the D-module generated by f s . Invent. Math. 207, 1239-1287 (2017). · Zbl 1370.14022
[233] G. Ziegler, Combinatorial construction of logarithmic differential forms, Adv. Math. 76, 116-154 (1989). · Zbl 0725.05032
[234] E. Artal Bartolo, B. Guerville, J. Viu-Sos, Fundamental groups of real arrangements and torsion in the lower central series quotients, Exp. Math. 29 (2020), no. 1, 28-35. · Zbl 1439.32072
[235] P. Bellingeri, S. Gervais, On p-almost direct products and residual properties of pure braid groups of nonorientable surfaces, Alg. Geom. Topol. 16 (2016) 547-568. · Zbl 1376.20035
[236] G. Denham, A.I. Suciu, Multinets, parallel connections, and Milnor fibrations of arrange-ments, Proc. London Math. Soc. 108 (2014), no. 6, 1435-1470. · Zbl 1307.32024
[237] M. Falk, R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), no. 1, 77-88. · Zbl 0574.55010 · doi:10.1007/BF01394780
[238] J. Guaschi, C.M. Pereiro, Lower central and derived series of semi-direct products, and applications to surface braid groups, J. Pure Appl. Alg. 224 (2020), no. 7, 106309, 39 pp. · Zbl 1452.20033
[239] G. Massuyeau, Finite-type invariants of 3-manifolds and the dimension subgroup problem, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 791-811. · Zbl 1129.57017 · doi:10.1112/jlms/jdm034
[240] S. Papadima, A.I. Suciu, Algebraic invariants for Bestvina-Brady groups, J. London Math. Soc. 76 (2007), no. 2, 273-292. · Zbl 1176.20037 · doi:10.1090/S1056-3911-07-00463-8
[241] S. Papadima, A.I. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, Proc. London Math. Soc. 114 (2017), no. 6, 961-1004. · Zbl 1378.32020
[242] J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), no. 2, 170-181. · Zbl 0135.05201 · doi:10.1016/0021-8693(65)90017-7
[243] A.I. Suciu, Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), pp. 43-79, Contemp. Math., vol 276, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0998.14012 · doi:10.1090/conm/276/04510
[244] A.I. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481. · Zbl 1300.32028 · doi:10.5802/afst.1412
[245] A.I. Suciu, On the topology of Milnor fibrations of hyperplane arrangements, Rev. Roumaine Math. Pures Appl. 62 (2017), no. 1, 191-215. · Zbl 1389.32030
[246] A.I. Suciu, Lower central series and split extensions, preprint.
[247] A.I. Suciu, Derived series, group extensions, and cohomology jump loci, preprint.
[248] A.I. Suciu, Milnor fibrations of arrangements with trivial algebraic monodromy, preprint.
[249] M. Yoshinaga, Double coverings of arrangement complements and 2-torsion in Milnor fiber homology, Eur. J. Math 6 (2020), nr. 3, 1097-1109. Reporter: Paul Mücksch Prof. Dr. Mario Salvetti · Zbl 1451.52015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.