×

Disciplined geometric programming. (English) Zbl 1425.90078

Summary: We introduce log-log convex programs, which are optimization problems with positive variables that become convex when the variables, objective functions, and constraint functions are replaced with their logs, which we refer to as a log-log transformation. This class of problems generalizes traditional geometric programming and generalized geometric programming, and it includes interesting problems involving nonnegative matrices. We give examples of log-log convex functions, some well-known and some less so, and we develop an analog of disciplined convex programming, which we call disciplined geometric programming. Disciplined geometric programming is a subclass of log-log convex programming generated by a composition rule and a set of functions with known curvature under the log-log transformation. Finally, we describe an implementation of disciplined geometric programming as a reduction in CVXPY 1.0.

MSC:

90C25 Convex programming
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42-60 (2018)
[2] Bagnoli, M., Bergstrom, T.: Log-concave probability and its applications. Econ. Theory 26(2), 445-469 (2005) · Zbl 1077.60012
[3] Baricz, Á.: Geometrically concave univariate distributions. J. Math. Anal. Appl. 363(1), 182-196 (2010) · Zbl 1185.60011
[4] Boyd, S., Kim, S.J., Patil, D., Horowitz, M.: Digital circuit optimization via geometric programming. Op. Res. 53(6), 899-932 (2005) · Zbl 1165.90655
[5] Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007) · Zbl 1178.90270
[6] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. learn. 3(1), 1-122 (2011) · Zbl 1229.90122
[7] Boyd, S., Vandenberghe, L.: Convex Optim. Cambridge University Press, New York (2004) · Zbl 1058.90049
[8] Brown, A., Harris, W.: A vehicle design and optimization model for on-demand aviation. In: AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2018)
[9] Burnell, E., Hoburg, W.: GPkit software for geometric programming. https://github.com/convexengineering/gpkit (2018). Version 0.7.0
[10] Calafiore, G., Gaubert, S., Possieri, C.: Log-sum-exp neural networks and posynomial models for convex and log-log-convex data. arXiv (2018)
[11] Chiang, M.: Geometric programming for communication systems. Commun. Inf. Theory 2(1/2), 1-154 (2005) · Zbl 1133.90006
[12] Chiang, M., Tan, C.W., Palomar, D., O’neill, D., Julian, D.: Power control by geometric programming. IEEE Trans. Wirel. Commun. 6(7), 2640-2651 (2007)
[13] Clasen, R.: The solution of the chemical equilibrium programming problem with generalized benders decomposition. Op. Res. 32(1), 70-79 (1984) · Zbl 0538.90083
[14] Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1-5 (2016) · Zbl 1360.90008
[15] Doyle, P., Reeds, J.: The knee-jerk mapping. arXiv (2006)
[16] Duffin, R., Peterson, E., Zener, C.: Geometric Programming—Theory and Application. Wiley, Hoboken (1967) · Zbl 0171.17601
[17] Förster, KH; Nagy, B.; Berlin, BB (ed.), Spectral properties of operator polynomials with nonnegative coefficients, 147-162 (2005), Berlin
[18] Fu, A., Narasimhan, B., Boyd, S.: CVXR: An R package for disciplined convex optimization. arXiv (2017)
[19] Grant, M.; Boyd, S.; Blondel, V. (ed.); Boyd, S. (ed.); Kimura, H. (ed.), Graph implementations for nonsmooth convex programs, 95-110 (2008), Berlin · Zbl 1205.90223
[20] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)
[21] Grant, M.; Boyd, S.; Ye, Y.; Grant, M. (ed.), Disciplined convex programming, 155-210 (2006), Berlin · Zbl 1130.90382
[22] Greenberg, H.: Mathematical programming models for environmental quality control. Op. Res. 43(4), 578-622 (1995) · Zbl 0857.90016
[23] Hershenson, M., Boyd, S., Lee, T.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 20(1), 1-21 (2001)
[24] Hoburg, W., Abbeel, P.: Geometric programming for aircraft design optimization. AIAA J. 52(11), 2414-2426 (2014)
[25] Hoburg, W., Kirschen, P., Abbeel, P.: Data fitting with geometric-programming-compatible softmax functions. Optim. Eng. 17(4), 897-918 (2016) · Zbl 1364.65120
[26] Jabr, R.A.: Application of geometric programming to transformer design. IEEE Trans. Magn. 41(11), 4261-4269 (2005)
[27] Jarczyk, W., Matkowski, J.: On Mulholland’s inequality. Proc. Am. Math. Soc. 130(11), 3243-3247 (2002) · Zbl 1005.39025
[28] Kandukuri, S., Boyd, S.: Optimal power control in interference-limited fading wireless channels with outage-probability specifications. Trans. Wirel. Commun. 1(1), 46-55 (2002)
[29] Kingman, J.: A convexity property of positive matrices. Q. J. Math. 12(1), 283-284 (1961) · Zbl 0101.25302
[30] Li, X., Gopalakrishnan, P., Xu, Y., Pileggi, L.: Robust analog/RF circuit design with projection-based posynomial modeling. In: Proceedings of the 2004 IEEE/ACM International Conference on Computer-aided Design, ICCAD ’04, pp. 855-862. IEEE Computer Society, Washington, DC (2004)
[31] Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004)
[32] Marin-Sanguino, A., Voit, E., Gonzalez-Alcon, C., Torres, N.: Optimization of biotechnological systems through geometric programming. Theor. Biol. Med. Model. 4(1), 38 (2007)
[33] Misra, S., Fisher, M., Backhaus, S., Bent, R., Chertkov, M., Pan, F.: Optimal compression in natural gas networks: a geometric programming approach. IEEE Trans. Control Netw. Syst. 2(1), 47-56 (2015) · Zbl 1370.90046
[34] Montel, P.: Sur les fonctions convexes et les fonctions sousharmoniques. J. Math. Pures Appl. 9(7), 29-60 (1928) · JFM 54.0517.01
[35] Mutapcic, A., Koh, K., Kim, S., Boyd, S.: GGPLAB: a matlab toolbox for geometric programming. Available from https://web.stanford.edu/ boyd/ggplab/ (2006)
[36] Nesterov, Y., Nemirovski, A.: Interior-point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics (1994)
[37] Niculescu, C.: Convexity according to the geometric mean. Math. Inequal. Appl. 3(2), 155-167 (2000) · Zbl 0952.26006
[38] Nussbaum, R.: Convexity and log convexity for the spectral radius. Linear Algebra Appl. 73, 59-122 (1986) · Zbl 0588.15016
[39] Özdemir, M.E., Yildiz, Ç., Gürbüz, M.: A note on geometrically convex functions. J. Inequal. Appl. 2014(1), 180 (2014) · Zbl 1308.26037
[40] Perelman, L.S., Amin, S.: Control of tree water networks: a geometric programming approach. Water Resour. Res. 51(10), 8409-8430 (2015)
[41] Preciado, V., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.: Optimal resource allocation for network protection: a geometric programming approach. IEEE Trans. Control Netw. Syst. 1(1), 99-108 (2014) · Zbl 1370.90048
[42] Saab, A., Burnell, E., Hoburg, W.: Robust designs via geometric programming. arXiv (2018)
[43] Tan, C.W.: Wireless network optimization by Perron-Frobenius theory. Found. Trends Netw. 9(2-3), 107-218 (2015) · Zbl 1333.68035
[44] Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: SC14 Workshop on High Performance Technical Computing in Dynamic Languages (2014)
[45] Vera, J., González-Alcón, C., Marín-Sanguino, A., Torres, N.: Optimization of biochemical systems through mathematical programming: methods and applications. Comput. Op. Res. 37(8), 1427-1438 (2010) · Zbl 1183.90372
[46] Xu, Y., Pileggi, L., Boyd, S.: ORACLE: optimization with recourse of analog circuits including layout extraction. In: Proceedings of the 41st Annual Design Automation Conference, DAC ’04, pp. 151-154. ACM, New York, USA (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.