zbMATH — the first resource for mathematics

Vortex interaction between two tandem flexible propulsors with a paddling-based locomotion. (English) Zbl 1382.76312
Summary: Schooling behaviours among self-propelled animals can benefit propulsion. Inspired by the schooling behaviours of swimming jellyfish, flexible bodies that self-propel through a paddling-based motion were modelled in a tandem configuration. This present study explored the hydrodynamic patterns generated by the interactions between two flexible bodies and the surrounding fluid in the framework of the penalty immersed boundary method. The hydrodynamic patterns produced in the wake revealed flow-mediated interactions between two tandem propulsors, including vortex–vortex and vortex–body interactions. Two tandem flexible propulsors paddling with identical amplitude and frequency produced stable configurations as a result of the flow-mediated interactions. Both the upstream and downstream propulsors benefited from the tandem configuration in terms of the locomotion velocity and the cost, compared with an isolated propulsion system. The interactions were examined as a function of the initial gap distance and the phase difference in the paddling frequency. The equilibrium gap distance between two propulsors remained constant, regardless of the initial gap distance, although it did depend on the phase difference in the paddling frequency.

76Z10 Biopropulsion in water and in air
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D17 Viscous vortex flows
92C05 Biophysics
Full Text: DOI
[1] Alben, S., Wake-mediated synchronization and drafting in coupled flags, J. Fluid Mech., 641, 489-496, (2009) · Zbl 1183.76653
[2] Alben, S.; Shelley, M., Coherent locomotion as an attracting state for a free flapping body, Proc. Natl Acad. Sci. USA, 102, 11163-11166, (2005)
[3] Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V., Passive propulsion in vortex wakes, J. Fluid Mech., 549, 385-402, (2006)
[4] Belyayev, V. V.; Zuyev, G. V., Hydrodynamic hypothesis of schooling in fish, J. Ichthy, 9, 578-584, (1969)
[5] Borazjani, I., Simulations of unsteady aquatic locomotion: from unsteadiness in straight-line swimming to fast-starts, Integr. Compar. Biol., 55, 740-752, (2015)
[6] Breder, C. M. Jr, Fish schools as operational structures, Fish. Bull., 74, 471-502, (1976)
[7] Colin, S. P.; Costello, J. H., Morphology, swimming performance and propulsive mode of six co-occurring hydromedusae, J. Expl Biol., 2002, 427-437, (2002)
[8] Dabiri, J. O., On the estimation of swimming and flying forces from wake measurements, J. Expl Biol., 208, 3519-3532, (2005)
[9] Dabiri, J. O., Optimal vortex formation as a unifying principle in biological propulsion, Annu. Rev. Fluid Mech., 41, 17-33, (2009) · Zbl 1157.76062
[10] Dabiri, J. O.; Colin, S. P.; Costello, J. H.; Gharib, M., Flow patterns generated by oblate medusa jellyfish: field measurements and laboratory analyses, J. Expl Biol., 208, 1257-1265, (2005)
[11] Daghooghi, M.; Borazjani, I., The hydrodynamic advantages of synchronized swimming in a rectangular pattern, Bioinspir. Biomim., 10, (2015)
[12] Eldredge, J. D.; Pisani, D., Passive locomotion of a simple articulated fish-like system in the wake of an obstacle, J. Fluid Mech., 607, 279-288, (2008) · Zbl 1145.76478
[13] Fish, F. E.; Lauder, G. V., Passive and active flow control by swimming fishes and mammals, Annu. Rev. Fluid Mech., 38, 193-224, (2006) · Zbl 1097.76020
[14] Gemmell, B. J.; Costello, J. H.; Colin, S. P.; Stewart, C. J.; Dabiri, J. O.; Tafti, D.; Priya, S., Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans, Proc. Natl Acad. Sci. USA, 110, 17904-17909, (2013)
[15] Graham, W. M.; Pages, F.; Hamner, W. M., A physical context for gelatinous zooplankton aggregations: a review, Hydrobiologia, 451, 199-212, (2001)
[16] Huang, W.-X.; Sung, H. J., An immersed boundary method for fluid – flexible structure interaction, Comput. Meth. Appl. Mech. Engng, 198, 2650-2661, (2009) · Zbl 1228.74105
[17] Jang, S. J.; Sung, H. J.; Krogstad, P., Effects of an axisymmetric contraction on a turbulent pipe flow, J. Fluid Mech., 687, 376-403, (2011) · Zbl 1241.76255
[18] Kim, K.; Baek, S. J.; Sung, H. J., An implicit velocity decoupling procedure for incompressible Navier-Stokes equations, Intl J. Numer. Meth. Fluids, 38, 125-138, (2002) · Zbl 1059.76046
[19] Kim, S.; Huang, W.-X.; Sung, H. J., Constructive and destructive interaction modes between two tandem flexible flags in viscous flow, J. Fluid Mech., 661, 511-521, (2010) · Zbl 1205.76076
[20] Lauder, G. V.; Jayne, B. C., Pectoral fin locomotion in fishes: testing drag-based models using three-dimensional kinematics, Am. Zool., 36, 567-581, (1996)
[21] Liao, J. C.; Beal, D. N.; Lauder, G. V.; Triantafyllou, M. S., Fish exploiting vortices decrease muscle activity, Science, 302, 1566-1569, (2003)
[22] Liao, J. C.; Beal, D. N.; Lauder, G. V.; Triantafyllou, M. S., The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street, J. Expl Biol., 206, 1059-1073, (2003)
[23] Linden, P. F.; Turner, J. S., ‘Optimal’ vortex rings and aquatic propulsion mechanisms, Proc. R. Soc. Lond. B, 271, 647-653, (2004)
[24] Mchenry, M. J.; Jed, J., The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita), J. Expl Biol., 206, 4125-4137, (2003)
[25] Megill, W. M.2002 The biomechanics of jellyfish swimming. PhD thesis, The University of British Columbia.
[26] Muller, U. K.; Van Den Heuvel, B. L. E.; Stamhuis, E. J.; Videler, J. J., Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso), J. Expl Biol., 200, 2893-2906, (1997)
[27] Park, S. G.; Chang, C. B.; Huang, W. H.; Sung, H. J., Simulation of swimming oblate jellyfish with a paddling-based locomotion, J. Fluid Mech., 748, 731-755, (2014)
[28] Ristroph, L.; Zhang, J., Anomalous hydrodynamic drafting of interacting flapping flags, Phys. Rev. Lett., 101, (2008)
[29] Rottini Sandrini, L.; Stravisi, J.; Pieri, G., A recent shift in the wind distribution and the appearance of unusual planktonic organisms in the Gulf of Trieste, Boll. Soc. Adr. Sci Trieste, 64, 77-84, (1980)
[30] Sahin, M.; Mohseni, K., An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria, J. Comput. Phys., 228, 4588-4605, (2009) · Zbl 1395.76062
[31] Sahin, M.; Mohseni, K.; Colin, S. P., The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria, J. Expl Biol., 212, 2656-2667, (2009)
[32] Shin, S. J.; Huang, W.-X.; Sung, H. J., Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method, Intl J. Numer. Meth. Fluids, 58, 263-286, (2008) · Zbl 1391.76576
[33] Tytell, E. D.; Lauder, G. V., The hydrodynamics of eel swimming. I. Wake structure, J. Expl Biol., 207, 1825-1841, (2004)
[34] Uddin, E.; Huang, W.-X.; Sung, H. J., Interaction modes of multiple flexible flags in a uniform flow, J. Fluid Mech., 729, 563-583, (2013) · Zbl 1291.76380
[35] Ulrike, K. M., Fish ’n flag, Science, 302, 1511-1512, (2003)
[36] Weihs, D., Hydromechanics of fish schooling, Nature, 241, 290-291, (1973)
[37] Zavodnik, D., Spatial aggregations of the swarming jellyfish Pelagia noctiluca (Scyphozoa), Mar. Biol., 94, 265-269, (1987)
[38] Zhang, J.; Childress, S.; Libchaber, A.; Shelley, M., Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408, 835-839, (2000)
[39] Zhao, H.; Freund, J. B.; Moser, R. D., A fixed-mesh method for incompressible fluid – structure systems with finite solid deformations, J. Comput. Phys., 227, 3114-3140, (2008) · Zbl 1329.74313
[40] Zhu, X.; He, G.; Zhang, X., Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration, Phys. Rev. Lett., 113, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.