zbMATH — the first resource for mathematics

The alignment of vortical structures in turbulent flow through a contraction. (English) Zbl 07150043
Summary: We investigate experimentally the turbulent flow through a two-dimensional contraction. Using a water tunnel with an active grid we generate turbulence at Taylor microscale Reynolds number \(Re_\lambda \sim 250\) which is advected through a \(2.5 : 1\) contraction. Volumetric and time-resolved tomographic particle image velocimetry and shake-the-box velocity measurements are used to characterize the evolution of coherent vortical structures at three streamwise locations upstream of and within the contraction. We confirm the conceptual picture of coherent large-scale vortices being stretched and aligned with the mean rate of strain. This alignment of the vortices with the tunnel centreline is stronger compared to the alignment of vorticity with the large-scale strain observed in numerical simulations of homogeneous turbulence. We judge this by the peak probability magnitudes of these alignments. This result is robust and independent of the grid-rotation protocols. On the other hand, while the pointwise vorticity vector also, to a lesser extent, aligns with the mean strain, it principally remains aligned with the intermediate eigenvector of the local instantaneous strain-rate tensor, as is known in other turbulent flows. These results persist when the distance from the grid to the entrance of the contraction is doubled, showing that modest transverse inhomogeneities do not significantly affect these vortical-orientation results.
76 Fluid mechanics
Full Text: DOI
[1] Adrian, R. J. & Westerweel, J.2011Particle Image Velocimetry. Cambridge University Press.
[2] Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H.1987Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids30, 2343-2353.
[3] Atkinson, C. & Soria, J.2009An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids47, 553-568.
[4] Ayyalasomayajula, S. & Warhaft, Z.2006Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. J. Fluid Mech.566, 273-307. · Zbl 1104.76005
[5] Batchelor, G. K. & Proudman, I.1954The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths7, 83-103. · Zbl 0055.19201
[6] Bell, J. H. & Mehta, R. D.1988 Contraction design for small low-speed wind tunnels. NASA-CR-182747.
[7] Bossuyt, J., Howland, M. F., Meneveau, C. & Meyers, J.2017Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel. Exp. Fluids58, 1.
[8] Brown, M. L., Parsheh, M. & Aidun, C. K.2006Turbulent flow in a converging channel: effect of contraction and return to isotropy. J. Fluid Mech.560, 437-448. · Zbl 1122.76302
[9] Cal, R. B., Lebrón, J., Castillo, L., Kang, H. S. & Meneveau, C.2010Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renew. Sustain. Energy2, 013106.
[10] Casey, T. A., Sakakibara, J. & Thoroddsen, S. T.2013Scanning tomographic particle image velocimetry applied to a turbulent jet. Phys. Fluids25, 025102.
[11] Chen, J., Meneveau, C. & Katz, J.2006Scale interactions of turbulence subjected to a straining-relaxation-destraining cycle. J. Fluid Mech.562, 123-150. · Zbl 1157.76301
[12] Cheng, W., Pullin, D. I. & Samtaney, R.2015Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer. J. Fluid Mech.785, 78-108. · Zbl 1381.76124
[13] Cheng, W., Pullin, D. I. & Samtaney, R.2018Large-eddy simulation of flow over a rotating cylinder: the lift crisis at Re_D = 6 × 10^4. J. Fluid Mech.855, 371-407. · Zbl 1415.76393
[14] Cheng, W., Pullin, D. I., Samtaney, R., Zhang, W. & Gao, W.2017Large-eddy simulation of flow over a cylinder with Re_D from 3. 9 × 10^3 to 8. 5 × 10^5 : a skin-friction perspective. J. Fluid Mech.820, 121-158. · Zbl 1383.76280
[15] Chong, M. S., Perry, A. E. & Cantwell, B. J.1990A general classification of three-dimensional flow fields. Phys. Fluids A2, 765-777.
[16] Clay, M. P. & Yeung, P. K.2016A numerical study of turbulence under temporally evolving axisymmetric contraction and subsequent relaxation. J. Fluid Mech.805, 460-493.
[17] Comte-Bellot, G. & Corrsin, S.1966The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech.25 (4), 657-682.
[18] Dogan, E., Hanson, R. E. & Ganapathisubramani, B.2016Interactions of large-scale free-stream turbulence with turbulent boundary layers. J. Fluid Mech.802, 79-107.
[19] Dogan, E., Hearst, R. J. & Ganapathisubramani, B.2017Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A375, 20160091.
[20] Elsinga, G. E., Scarano, F., Wieneke, B. & Van Oudheusden, B. W.2006Tomographic particle image velocimetry. Exp. Fluids41, 933-947.
[21] Ertunç, Ö. & Durst, F.2008On the high contraction ratio anomaly of axisymmetric contraction of grid-generated turbulence. Phys. Fluids20, 025103. · Zbl 1182.76234
[22] Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T.2007Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp. Fluids42, 923-939.
[23] Gesemann, S.2015 From particle tracks to velocity and acceleration fields using B-splines and penalties. .
[24] Gualtieri, P. & Meneveau, C.2010Direct numerical simulations of turbulence subjected to a straining and destraining cycle. Phys. Fluids22, 065104. · Zbl 1190.76046
[25] Gylfason, A. & Warhaft, Z.2009Effects of axisymmetric strain on a passive scalar field: modelling and experiment. J. Fluid Mech.628, 339-356. · Zbl 1181.76077
[26] Hamlington, P. E., Schumacher, J. & Dahm, W. J. A.2008Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Phys. Fluids20, 111703. · Zbl 1182.76306
[27] Han, Y. O., George, W. K. & Hjärne, J.2005 Effect of a contraction on turbulence. Part 1. Experiment. AIAA Paper 2005-1119.
[28] Hearst, R. J., Dogan, E. & Ganapathisubramani, B.2018Robust features of a turbulent boundary layer subjected to high-intensity free-stream turbulence. J. Fluid Mech.851, 416-435. · Zbl 1415.76336
[29] Hearst, R. J. & Ganapathisubramani, B.2017Tailoring incoming shear and turbulence profiles for lab-scale wind turbines. Wind Energy20, 2021-2035.
[30] Hearst, R. J., Gomit, G. & Ganapathisubramani, B.2016Effect of turbulence on the wake of a wall-mounted cube. J. Fluid Mech.804, 513-530.
[31] Hearst, R. J. & Lavoie, P.2015The effect of active grid initial conditions on high Reynolds number turbulence. Exp. Fluids56, 185.
[32] Hunt, J. C. R. & Carruthers, D. J.1990Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech.212, 497-532. · Zbl 0692.76054
[33] Hunt, J. C. R., Wray, A. A. & Moin, P.1988Eddies, streams and convergence zones in turbulent flows. In Proceedings of the Summer Program, pp. 193-208. Center for Turbulence Research.
[34] Hussain, A. K. M. F.1986Coherent structures and turbulence. J. Fluid Mech.173, 303-356.
[35] Hussain, A. K. M. F. & Ramjee, V.1976Effects of the axisymmetric contraction shape on incompressible turbulent flow. Trans. ASME J. Fluids Engng98 (1), 58-68.
[36] Ianiro, A., Lynch, K. P., Violato, D., Cardone, G. & Scarano, F.2018Three-dimensional organization and dynamics of vortices in multichannel swirling jets. J. Fluid Mech.843, 180-210.
[37] Iino, J., Van Atta, C. W. & Keller, K. H.2002Energy exchange in a stably stratified flow with laterally distorting duct. Phys. Fluids14, 323-332. · Zbl 1184.76243
[38] Jang, S. J., Sung, H. J. & Krogstad, P.2011Effect of an axisymmetric contraction on a turbulent pipe flow. J. Fluid Mech.687, 376-403. · Zbl 1241.76255
[39] Jeong, J. & Hussain, F.1995On the identification of a vortex. J. Fluid Mech.285, 69-94. · Zbl 0847.76007
[40] Kang, H. S. & Meneveau, C.2008Experimental study of an active grid-generated shearless mixing layer and comparisons with large-eddy simulation. Phys. Fluids20, 125102. · Zbl 1182.76366
[41] Larssen, J. V. & Devenport, W. J.2011On the generation of large-scale homogeneous turbulence. Exp. Fluids50, 1207-1223.
[42] Lee, M. J. & Reynolds, W. C.1985On the structure of homogeneous turbulence. In Fifth International Symposium on Turbulent Shear Flows, Aug 7-9. Cornell University.
[43] Lee, C.-M., Gylfason, Á., Perlekar, P. & Toschi, F.2015Inertial particle acceleration in strained turbulence. J. Fluid Mech.785, 31-53. · Zbl 1381.76120
[44] Lesieur, M., Métais, O. & Comte, P.2005Large-Eddy Simulations of Turbulence. Cambridge University Press.
[45] Makita, H.1991Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res.8, 53-64.
[46] Michioka, T., Sato, A. & Sada, K.2011Wind-tunnel experiments for gas dispersion in an atmospheric boundary layer with large-scale turbulent motion. Boundary-Layer Meteorol.141, 35-51.
[47] Misra, A. & Pullin, D. I.1997A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids9, 2443-2454. · Zbl 1185.76770
[48] Mugundhan, V.2019 Tomographic measurements of turbulent flow through a contraction. PhD dissertation, King Abdullah University of Science and Technology.
[49] Mullin, J. A. & Dahm, W. J. A.2006Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flows. II. Experimental results. Phys. Fluids18, 035102.
[50] Mydlarski, L.2017A turbulent quarter century of active grids: from Makita (1991) to the present. Fluid Dyn. Res.49, 061401.
[51] Mydlarski, L. & Warhaft, Z.1996On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech.320, 331-368.
[52] Nomura, K. K. & Post, G. K.1998The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech.377, 65-97. · Zbl 0933.76035
[53] Obligado, M., Cartellier, A. & Bourgoin, M.2015Experimental detection of superclusters of water droplets in homogeneous isotropic turbulence. Europhys. Lett.112, 54004.
[54] Obligado, M., Teitelbaum, T., Cartellier, A., Mininni, P. & Bourgoin, M.2014Preferential concentration of heavy particles in turbulence. J. Turbul.15 (5), 293-310.
[55] Poorte, R. E. G. & Biesheuvel, A.2002Experiments on the motion of gas bubbles in turbulence generated by an active grid. J. Fluid Mech.461, 127-154. · Zbl 0994.76504
[56] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[57] Prakash, V. N., Mercado, J. M., Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C.2016Energy spectra in turbulent bubbly flows. J. Fluid Mech.791, 174-190. · Zbl 1382.76263
[58] Prandtl, L.1933 Attaining a steady air stream in wind tunnels. NACA Tech. Mem. No. 726.
[59] Reif, B. A. P., George, W. K. & Hjärne, J.2005 Effect of a contraction on turbulence. Part 2. Theory. AIAA Paper 2005-1120.
[60] Ribner, H. S. & Tucker, M.1952 Spectrum of turbulence in a contracting stream. NACA Rep.1113, 99-115.
[61] Rockel, S., Peinke, J., Hölling, M. & Cal, R. B.2017Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid. Renew. Energy112, 1-16.
[62] Schanz, D., Gesemann, S. & Schröder, A.2016Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp. Fluids57, 70.
[63] Schanz, D., Gesemann, S., Schröder, A., Weineke, B. & Novara, M.2013bNon-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas. Sci. Technol.24, 024009.
[64] Schanz, D., Schröder, A., Gesemann, S., Michaelis, D. & Weineke, B.2013a‘Shake The Box’: A highly efficient and accurate tomographic particle tracking velocimetry (TOMO-PTV) method using prediction of particle positions. In 10th International Symposium on Particle Image Velocimetry, PIV-13, Delft, The Netherlands.
[65] Sharp, N. S., Neuscamman, S. & Warhaft, Z.2009Effects of large-scale free stream turbulence on a turbulent boundary layer. Phys. Fluids21, 095105. · Zbl 1183.76470
[66] Sirivat, A. & Warhaft, Z.1983The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J. Fluid Mech.128, 323-346.
[67] Sreenivasan, K. R. & Narasimha, R.1978Rapid distortion of axisymmetric turbulence. J. Fluid Mech.84, 497-516. · Zbl 0371.76047
[68] Su, L. K. & Dahm, W. J. A.1996Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. II. Experimental results. Phys. Fluids8, 1883-1906.
[69] Taylor, G. I.1935Turbulence in a contracting stream. Z. Angew. Math. Mech.15, 91-96. · JFM 61.0927.01
[70] Tennekes, H. & Lumley, J. L.1972A First Course in Turbulence. MIT Press. · Zbl 0285.76018
[71] Thormann, A. & Meneveau, C.2014Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys. Fluids26, 025112.
[72] Thormann, A. & Meneveau, C.2015Decaying turbulence in the presence of a shearless uniform kinetic energy gradient. J. Turbul.16 (5), 442-459.
[73] Thoroddsen, S. T. & Van Atta, C. W.1993Experimental study of the effects of grid configuration on the dynamical evolution of decaying turbulence in a stably stratified fluid. Dyn. Atmos. Oceans19, 259-288.
[74] Thoroddsen, S. T. & Van Atta, C. W.1995aThe effects of a vertical contraction on turbulence dynamics in a stably stratified fluid. J. Fluid Mech.285, 371-406.
[75] Thoroddsen, S. T. & Van Atta, C. W.1995bStably stratified turbulence subjected to a constant area vertical expansion. Phys. Fluids7, 1165-1167.
[76] Tsinober, A., Kit, E. & Dracos, T.1992Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech.242, 169-192.
[77] Tsugé, S.1984Effects of flow contraction on evolution of turbulence. Phys. Fluids27, 1948-1956. · Zbl 0571.76056
[78] Uberoi, M. S.1956Effect of wind-tunnel contraction on free-stream turbulence. J. Aero. Sci.23 (8), 754-764.
[79] Uberoi, M. S. & Wallis, S.1966Small axisymmetric contraction of grid turbulence. J. Fluid Mech.24 (3), 539-543.
[80] Warhaft, Z.1980An experimental study of the effect of uniform strain on thermal fluctuations in grid-generated turbulence. J. Fluid Mech.99 (3), 545-573.
[81] Weineke, B.2008Volume self-calibration for 3D particle image velocimetry. Exp. Fluids45, 549-556.
[82] Weineke, B.2013Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol.24, 024008.
[83] Westerweel, J., Elsinga, G. E. & Adrian, R. J.2013Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech.45, 409-436. · Zbl 1359.76008
[84] Worth, N. A. & Nickels, T. B.2008Acceleration of Tomo-PIV by estimating the initial volume intensity distribution. Exp. Fluids45, 847-856.
[85] Zhang, J., Tao, B. & Katz, J.1997Turbulent flow measurement in a square duct with hybrid holographic PIV. Exp. Fluids23, 378-381.
[86] Zusi, C. J. & Perot, J. B.2013Simulation and modeling of turbulence subjected to a period of uniform plane strain. Phys. Fluids25, 110819.
[87] Zusi, C. J. & Perot, J. B.2014Simulation and modeling of turbulence subjected to a period of axisymmetric contraction or expansion. Phys. Fluids26, 115103.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.