×

zbMATH — the first resource for mathematics

Regular Gleason measures and generalized effect algebras. (English) Zbl 1329.81094
Summary: We study measures, finitely additive measures, regular measures, and \(\sigma\)-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
MSC:
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Fichtengol’c, G.M.: Kurs differencial’nogo i integral’nogo isčislenia. Fizmatgiz, Moskva (1962). (in Russian)
[2] Dorofeev, SV; Sherstnev, AN, Frame-type functions and their applications, izv. vuzov matem. no. 4 (1990), 23-29 (in Russian), English translation: Sov. Math., 34, 25-31, (1990) · Zbl 0739.46047
[3] Dvurečenskij, A, Signed states on a logic, Math. Slovaca, 28, 33-40, (1978) · Zbl 0372.02017
[4] Dvurečenskij, A, Converse of the eilers-horst theorem, Inter. J. Theor. Phys., 26, 609-612, (1987) · Zbl 0631.46067
[5] Dvurečenskij, A.: Gleason’s Theorem and its Applications, Mathematics and its Applications, vol. 60. Kluwer Acad. Publ., Dordrecht/Ister Science, Bratislava (1993) · Zbl 0795.46045
[6] Dvurečenskij, A; Janda, J, On bilinear forms from the point of view of generalized effect algebras, Found. Phys., 43, 1136-1152, (2013) · Zbl 1285.81003
[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ., Dordrecht, Ister Science, Bratislava, 541 + xvi pp (2000) · Zbl 1285.81003
[8] Foulis, DJ; Bennett, MK, Effect algebras and unsharp quantum logics, Found. Phys., 24, 1331-1352, (1994) · Zbl 1213.06004
[9] Gleason, AM, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6, 885-893, (1957) · Zbl 0078.28803
[10] Halmos, P.R. Introduction to Hilbert Space and the Theory of Spectral Multiplicity, 2nd ed. Chelsea Publ. Co., New York (1957) · Zbl 0079.12404
[11] Lugovaya, GD, Bilinear forms defining measures on projectors. izv. vyssh. uchebn. zaved., mat. no. 2 249 (1983), 88-88 (in Russian), English translation: Sov. Math., 27, 102-102, (1983) · Zbl 0532.46037
[12] Lugovaya, G.D.: On a construction of unbounded measures on projectors of Hilbert space. Issled. po priklad. matem., Izdat. Kazan Univ. (1984), 202-205 (in Russian). English translation: J. Sov. Math. 44(5), 711-713 (1984) · Zbl 0597.46064
[13] Lugovaya, GD; Sherstnev, AN, On the Gleason theorem for unbounded measures, izv. vuzov matem. no. 2 (1980), 30-32 (in Russian), English translation: Sov. Math., 24, 35-38, (1980) · Zbl 0483.46042
[14] Riečanová, Z; Zajac, M; Pulmannová, S, Effect algebras of positive linear operators densely defined on Hilbert spaces, Rep. Math. Phys., 68, 261-270, (2011) · Zbl 1250.81015
[15] Sherstnev, A.N.: On a notion of a charge in noncommutative scheme of measure theory. In: Veroj. metod i kibern., Kazan, No. 10-11, pp. 68-72 (in Russian) (1974)
[16] Simon, B, A canonical decomposition for quadratic forms with applications for monotone convergence theorems, J. Funct. Analysis, 28, 377-385, (1978) · Zbl 0413.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.