zbMATH — the first resource for mathematics

The sum of observables on a \(\sigma\)-distributive lattice effect algebra. (English) Zbl 1418.03181
Summary: Observables on quantum structures can be seen as generalizations of random variables on a measurable space \((\Omega , \mathcal {A})\) for the case when \(\mathcal {A}\) is not necessarily a Boolean algebra. The present paper investigates an extending of the usual pointwise sum of random variables onto the set of bounded observables on a \(\sigma\)-distributive lattice effect algebra \(E\). We describe conditions under which this operation, so-called sum \(x+y\) of observables \(x\), \(y\), preserves continuity of spectral resolutions of \(x\), \(y\). We show how the spectrum \(\sigma (x+y)\) depends on spectra \(\sigma (x)\), \(\sigma (y)\), and we provide a relation between the meager part \(x_m\) and the dense part \(x_d\) of an observable \(x\).
03G12 Quantum logic
06C15 Complemented lattices, orthocomplemented lattices and posets
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI
[1] Cignoli R, D’Ottaviano IML, Mundici D (2000) Algebraic foundations of many-valued reasoning. Kluwer Academic Publishers, Dordrecht · Zbl 0937.06009
[2] Davey BA, Pristley HA (2002) Introduction to lattices and order, 2nd edn. Cambridge University Press, Cambridge
[3] Dvurečenskij, A., Representable effect algebras and observables, Int J Theor Phys, 53, 2855-2866, (2014) · Zbl 1308.81011
[4] Dvurečenskij, A., Olson order of quantum observables, Int J Theor Phys, 55, 4896-4912, (2016) · Zbl 1358.81011
[5] Dvurečenskij, A., On orders of observables on effect algebras, Int J Theor Phys, 56, 4112-4125, (2017) · Zbl 1387.81015
[6] Dvurečenskij, A., Quantum observables and effect algebras, Int J Theor Phys, 57, 637-651, (2018) · Zbl 1394.81020
[7] Dvurečenskij, A., Sum of observables on MV-effect algebras, Soft Comput, 22, 2485-2493, (2018) · Zbl 1398.06012
[8] Dvurečenskij, A.; Kuková, M., Observables on quantum structures, Inf Sci, 262, 215-222, (2014) · Zbl 1329.81140
[9] Dvurečenskij A, Pulmannová S (2000) New trends in quantum structures. Kluwer Academic Publisher, Dotrecht · Zbl 0987.81005
[10] Foulis, DJ; Bennett, MK, Effect algebras and unsharp quantum logics, Found Phys, 24, 1331-1352, (1994) · Zbl 1213.06004
[11] Gudder, SP, Uniqueness and existence properties of bounded observables, Pac J Math, 19, 81-93, (1966) · Zbl 0149.23603
[12] Halmos PR (1974) Measure theory. Springer, Berlin · Zbl 0283.28001
[13] Janda J, Xie Y (2018) The spectrum of the sum of observables on \(\sigma \)-complete MV-effect algebras. Soft Comput. https://doi.org/10.1007/s00500-018-3078-0 · Zbl 1415.06004
[14] Jenča, G., Sharp and meager elements in orthocomplete homogeneous effect algebras, Order, 27, 41-61, (2010) · Zbl 1193.03084
[15] Jenča, G.; Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL, 80, 24-29, (1999)
[16] Varadarajan, VS, Probability in physics and a theorem on simultaneous observability, Commun Pure Appl Math, 15, 189-217, (1962) · Zbl 0109.44705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.