×

zbMATH — the first resource for mathematics

Two-dimensional observables and spectral resolutions. (English) Zbl 1441.81004
Summary: A two-dimensional observable is a special kind of a \(\sigma\)-homomorphism defined on the Borel \(\sigma\)-algebra of the real plane with values in a \(\sigma\)-complete MV-algebra or in a monotone \(\sigma\)-complete effect algebra. A two-dimensional spectral resolution is a mapping defined on the real plane with values in a \(\sigma\)-complete MV-algebra or in a monotone \(\sigma\)-complete effect algebra which has properties similar to a two-dimensional distribution function in probability theory. We show that there is a one-to-one correspondence between two-dimensional observables and two-dimensional spectral resolutions defined on a \(\sigma\)-complete MV-algebras as well as on the monotone \(\sigma\)-complete effect algebras with the Riesz decomposition property. The result is applied to the existence of a joint two-dimensional observable of two one-dimensional observables.
MSC:
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
06D35 MV-algebras
PDF BibTeX Cite
Full Text: DOI
References:
[1] Buhagiar, D.; Chetcuti, E.; Dvurečenskij, A., Loomis-Sikorski representation of monotone σ-complete effect algebras, Fuzzy Sets and Systems, 157, 683 (2006) · Zbl 1097.06010
[2] Catlin, D., Spectral theory in quantum logics, Inter. J. Theor. Phys., 1, 285 (1968)
[3] Cignoli, R.; D’Ottaviano, I. M.L.; Mundici, D., Algebraic Foundations of Many-valued Reasoning (2000), Kluwer Academic Publ.: Kluwer Academic Publ. Dordrecht · Zbl 0937.06009
[4] Di Nola, A.; Dvurečenskij, A., Product MV-algebras, Multi. Val. Logic, 6, 193 (2001) · Zbl 1016.06006
[5] Di Nola, A.; Dvurečenskij, A.; Lenzi, G., Observables on perfect MV-algebras, Fuzzy Sets and Systems, 369, 57 (2019) · Zbl 1423.06047
[6] Dvurečenskij, A., Loomis-Sikorski theorem for σ-complete MV-algebras and l-groups, J. Austral. Math. Soc. Ser. A, 68, 261 (2000) · Zbl 0958.06006
[7] Dvurečenskij, A., MV-observables and MV-algebras, J. Math. Anal. Appl., 259, 413 (2001) · Zbl 0992.03081
[8] Dvurečenskij, A., On effect algebras which can be covered by MV-algebras, Inter. J. Theor. Phys., 41, 221 (2002) · Zbl 1022.06005
[9] Dvurečenskij, A., Central elements and Cantor-Bernstein’s theorem for pseudo-effect algebras, J. Austral. Math. Soc., 74, 121 (2003) · Zbl 1033.03036
[10] Dvurečenskij, A., Sum of observables on MV-effect algebras, Soft Computing, 22, 2485 (2018) · Zbl 1398.06012
[11] Dvurečenskij, A.; Kuková, M., Observables on quantum structures, Inf. Sci., 262, 215 (2014) · Zbl 1329.81140
[12] Dvurečenskij, A.; Pulmannová, S., New Trends in Quantum Structures (2000), Kluwer Academic Publ.: Kluwer Academic Publ. Dordrecht, Ister Science, Bratislava · Zbl 0987.81005
[13] Dvurečenskij, A.; Vetterlein, T., Pseudoeffect algebras. I. Basic properties, Inter. J. Theor. Phys., 40, 685 (2001) · Zbl 0994.81008
[14] Foulis, D. J.; Bennett, M. K., Effect algebras and unsharp quantum logics, Found. Phys., 24, 1325 (1994) · Zbl 1213.06004
[15] Goodearl, K. R., Partially Ordered Abelian Groups with Interpolation (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, Rhode Island · Zbl 0589.06008
[16] Greechie, R., Orthomodular lattices admitting no states, J. Comb. Theor., 10, 119 (1971) · Zbl 0219.06007
[17] Janda, J.; Xie, Y., The spectrum of the sum of observables on σ-complete MV-effect algebras, Soft Computing, 22, 8041 (2018) · Zbl 1415.06004
[18] Jenčová, A.; Pulmannová, S.; Vinceková, E., Observables on σ-MV-algebras and σ-lattice effect algebras, Kybernetika, 47, 541 (2011) · Zbl 1237.81008
[19] Kallenberg, O., Foundations of Modern Probability (1997), Springer: Springer New York, Berlin, Heidelberg · Zbl 0892.60001
[20] Kolmogorov, A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung (1933), Julius Springer: Julius Springer Berlin · JFM 59.1152.03
[21] Mundici, D., Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal., 65, 15 (1986) · Zbl 0597.46059
[22] Mundici, D., Tensor products and the Loomis-Sikorski theorem for MV-algebras, Advan. Appl. Math., 22, 227 (1999) · Zbl 0926.06004
[23] Pulmannová, S., Compatibility and decomposition of effects, J. Math. Phys., 43, 2817 (2002) · Zbl 1059.81016
[24] Ravindran, K., On a structure theory of effect algebras (1996), Kansas State Univ.: Kansas State Univ. Manhattan, Kansas, PhD thesis
[25] Riečanová, Z., Generalization of blocks for D-lattice and lattice ordered effect algebras, Inter. J. Theor. Phys., 39, 231 (2000) · Zbl 0968.81003
[26] Varadarajan, V. S., Geometry of Quantum Theory, Vol. 1 (1968), van Nostrand: van Nostrand Princeton, New Jersey · Zbl 0155.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.