×

Bound states of the Dirac equation for the generalized Woods-Saxon potential in pseudospin and spin symmetry limits. (English) Zbl 1302.81091

Summary: Bound state solutions of the Dirac equation for the generalized Woods-Saxon potential are examined for arbitrary \(\kappa\) states by using the approximation to the Coulomb and centrifugal potentials in pseudospin symmetry (PSS) and spin symmetry (SS) limits, respectively. The energy eigenvalues and corresponding eigenfunctions are obtained in closed forms. Some numerical examples are given for proton or anti-proton in a nucleus. The correlations between the energy splitting and some parameters of the effective potential in PSS limit are examined for several pseudospin doublets.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V35 Nuclear physics
35Q41 Time-dependent Schrödinger equations and Dirac equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRev.75.1766.2 · doi:10.1103/PhysRev.75.1766.2
[2] DOI: 10.1016/0370-2693(69)90443-2 · doi:10.1016/0370-2693(69)90443-2
[3] DOI: 10.1016/0375-9474(69)90077-3 · doi:10.1016/0375-9474(69)90077-3
[4] DOI: 10.1088/0031-8949/26/4/003 · doi:10.1088/0031-8949/26/4/003
[5] DOI: 10.1103/PhysRevLett.59.1405 · doi:10.1103/PhysRevLett.59.1405
[6] DOI: 10.1016/0375-9474(90)90004-6 · doi:10.1016/0375-9474(90)90004-6
[7] DOI: 10.1016/0375-9474(94)90026-4 · doi:10.1016/0375-9474(94)90026-4
[8] DOI: 10.1103/PhysRevLett.95.252501 · doi:10.1103/PhysRevLett.95.252501
[9] DOI: 10.1103/PhysRevLett.78.436 · doi:10.1103/PhysRevLett.78.436
[10] DOI: 10.1103/PhysRevC.58.R628 · doi:10.1103/PhysRevC.58.R628
[11] DOI: 10.1103/PhysRevC.59.154 · doi:10.1103/PhysRevC.59.154
[12] DOI: 10.1103/PhysRevLett.91.262501 · doi:10.1103/PhysRevLett.91.262501
[13] DOI: 10.1103/PhysRevC.81.064324 · doi:10.1103/PhysRevC.81.064324
[14] DOI: 10.1103/PhysRevA.86.032122 · doi:10.1103/PhysRevA.86.032122
[15] DOI: 10.1140/epja/i2006-10066-0 · doi:10.1140/epja/i2006-10066-0
[16] DOI: 10.1140/epja/i2010-10938-6 · doi:10.1140/epja/i2010-10938-6
[17] DOI: 10.1103/PhysRevLett.109.072501 · doi:10.1103/PhysRevLett.109.072501
[18] DOI: 10.1103/PhysRevC.83.041301 · doi:10.1103/PhysRevC.83.041301
[19] DOI: 10.1103/PhysRevC.87.014334 · doi:10.1103/PhysRevC.87.014334
[20] DOI: 10.1103/PhysRevC.88.024323 · doi:10.1103/PhysRevC.88.024323
[21] DOI: 10.1103/PhysRev.95.577 · doi:10.1103/PhysRev.95.577
[22] DOI: 10.1016/j.physletb.2003.06.041 · Zbl 01958726 · doi:10.1016/j.physletb.2003.06.041
[23] DOI: 10.1016/S0375-9601(98)00524-6 · doi:10.1016/S0375-9601(98)00524-6
[24] DOI: 10.1016/S0921-4526(97)84161-0 · doi:10.1016/S0921-4526(97)84161-0
[25] DOI: 10.1088/0305-4470/9/9/010 · doi:10.1088/0305-4470/9/9/010
[26] DOI: 10.1103/PhysRevLett.93.180405 · doi:10.1103/PhysRevLett.93.180405
[27] DOI: 10.2478/s11534-009-0118-5 · doi:10.2478/s11534-009-0118-5
[28] DOI: 10.1088/0305-4470/35/3/314 · Zbl 1041.81100 · doi:10.1088/0305-4470/35/3/314
[29] DOI: 10.1016/j.physleta.2005.02.026 · Zbl 1136.81357 · doi:10.1016/j.physleta.2005.02.026
[30] DOI: 10.1016/j.physleta.2005.02.029 · Zbl 1136.81351 · doi:10.1016/j.physleta.2005.02.029
[31] DOI: 10.1103/PhysRevA.71.052101 · Zbl 1227.81169 · doi:10.1103/PhysRevA.71.052101
[32] DOI: 10.1016/j.physleta.2005.10.086 · Zbl 1195.81046 · doi:10.1016/j.physleta.2005.10.086
[33] DOI: 10.1016/j.physleta.2005.10.085 · Zbl 1195.81051 · doi:10.1016/j.physleta.2005.10.085
[34] DOI: 10.1063/1.4705284 · Zbl 1275.81024 · doi:10.1063/1.4705284
[35] DOI: 10.1142/S0217732304013313 · Zbl 1080.81650 · doi:10.1142/S0217732304013313
[36] DOI: 10.1088/0305-4470/39/43/005 · Zbl 1105.81027 · doi:10.1088/0305-4470/39/43/005
[37] DOI: 10.1007/s10910-007-9335-6 · Zbl 1154.81377 · doi:10.1007/s10910-007-9335-6
[38] DOI: 10.1140/epja/i2009-10890-6 · doi:10.1140/epja/i2009-10890-6
[39] DOI: 10.1088/0031-8949/83/06/065003 · Zbl 1222.81175 · doi:10.1088/0031-8949/83/06/065003
[40] DOI: 10.1088/0031-8949/85/05/055007 · Zbl 1262.81048 · doi:10.1088/0031-8949/85/05/055007
[41] DOI: 10.1155/2013/196986 · Zbl 1328.81103 · doi:10.1155/2013/196986
[42] Grenier W., Relativistic Quantum Mechanics, 3. ed. (2000)
[43] DOI: 10.1103/PhysRevC.57.1167 · doi:10.1103/PhysRevC.57.1167
[44] DOI: 10.1007/978-1-4757-1595-8 · doi:10.1007/978-1-4757-1595-8
[45] DOI: 10.1103/PhysRevC.74.039902 · doi:10.1103/PhysRevC.74.039902
[46] Abramowitz M., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1992) · Zbl 0171.38503
[47] Flügge S., Practical Quantum Mechanics (1994)
[48] DOI: 10.1088/1751-8113/41/6/065308 · Zbl 1133.81018 · doi:10.1088/1751-8113/41/6/065308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.