zbMATH — the first resource for mathematics

Parametric numerical study of passive scalar mixing in shock turbulence interaction. (English) Zbl 07203518
Summary: Turbulent mixing of passive scalars is studied in the canonical shock-turbulence interaction configuration via shock-capturing direct numerical simulations, varying the shock Mach number \((M=1.28-5)\), turbulence Mach number \((M_t=0.1-0.4)\), Taylor microscale Reynolds number \((Re_\lambda \approx 40,70)\) and Schmidt number \((Sc=0.5, 1, 2)\). The shock-normal evolution of scalar variance and dissipation transport equations, spectra and probability density functions (PDFs) are examined. Scalar dissipation, its production and destruction increase across the shock with higher \(M\), lower \(M_t\) and lower \(Re_\lambda\). Mixing enhancement for different flow topologies across the shock is studied from changes in the PDFs of velocity gradient tensor invariants and conditional distributions of scalar dissipation. The proportion of the stable-focus-stretching flow topology is the highest among all the topologies in the flow both before and after the shock. Unstable-node/saddle/saddle topology is the most dissipative throughout the flow domain, despite variations across the shock. Preshock and postshock distributions of the alignment between the strain-rate tensor eigenvectors and the scalar gradient, vorticity and the mean streamwise vector conditioned on flow topology are studied. A novel barycentric map representation is introduced for a more direct visualization of the alignments and conditioned scalar dissipation distributions. Interaction with the shock increases alignment of the scalar gradient with the most extensive eigenvector, decreasing it with the most compressive, which is still dominant. The barycentric map of the passive scalar gradient also reveals that, across the shock, the most probable alignment between scalar gradient and strain eigendirections converges towards the alignment that provides the most dissipation. This also leads to an enhancement of scalar dissipation immediately downstream of the shock.
76 Fluid mechanics
Full Text: DOI
[1] Agui, J. H., Briassulis, G. & Andreopoulos, Y.2005Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech.524, 143-195. · Zbl 1060.76500
[2] Andreopoulos, Y.2008Vorticity and velocity alignment in compressible flows: an experimental study of helicity density in turbulence and vortices. Russ. J. Electrochem.44 (4), 390.
[3] Andreopoulos, Y., Agui, J. H. & Briassulis, G.2000Shock wave-turbulence interactions. Annu. Rev. Fluid Mech.32 (1), 309-345. · Zbl 0988.76048
[4] Arun, S., Sameen, A., Srinivasan, B. & Girimaji, S. S.2019Topology-based characterization of compressibility effects in mixing layers. J. Fluid Mech.874, 38-75. · Zbl 1419.76350
[5] Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H.1987Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids30 (8), 2343-2353.
[6] Barre, S., Alem, D. & Bonnet, J. P.1996Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J.34 (5), 968-974.
[7] Bermejo-Moreno, I., Larsson, J. & Lele, S. K.2010LES of canonical shock-turbulence interaction. In Annu. Res. Briefs, pp. 209-222. Center for Turbulence Research, Stanford University.
[8] Boukharfane, R., Bouali, Z. & Mura, A.2018Evolution of scalar and velocity dynamics in planar shock-turbulence interaction. Shock Waves28 (6), 1-25.
[9] Braun, N. O., Pullin, D. I. & Meiron, D. I.2019Large eddy simulation investigation of the canonical shock-turbulence interaction. J. Fluid Mech.858, 500-535. · Zbl 1415.76390
[10] Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M.2003Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech.474, 193-225. · Zbl 1065.76110
[11] Brouillette, M.2002The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech.34 (1), 445-468. · Zbl 1047.76025
[12] Cambon, C., Coleman, G. N. & Mansour, N. N.1993Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite Mach number. J. Fluid Mech.257, 641-665. · Zbl 0789.76045
[13] Chen, C.2018 Shock-turbulence interactions at high turbulence intensities: theory and direct numerical simulations. PhD thesis, Texas A&M University.
[14] Chen, C. H. & Donzis, D. A.2019Shock-turbulence interactions at high turbulence intensities. J. Fluid Mech.870, 813-847. · Zbl 1419.76358
[15] Chong, M. S., Perry, A. E. & Cantwell, B. J.1990A general classification of three-dimensional flow fields. Phys. Fluids2 (5), 765-777.
[16] Corrsin, S.1951On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys.22 (4), 469-473. · Zbl 0044.40601
[17] Danaila, L. & Antonia, R. A.2009Spectrum of a passive scalar in moderate Reynolds number homogeneous isotropic turbulence. Phys. Fluids21 (11), 111702. · Zbl 1183.76164
[18] Danish, M. & Meneveau, C.2018Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence. Phys. Rev. F3 (4), 044604.
[19] Danish, M., Suman, S. & Girimaji, S. S.2016Influence of flow topology and dilatation on scalar mixing in compressible turbulence. J. Fluid Mech.793, 633-655. · Zbl 1382.76135
[20] Desjardins, T., Merritt, E. C., Flippo, K. A., Kline, J. L., Di Stefano, C., Devolder, B. G., Doss, F. W., Fierro, F., Randolph, R. B., Schmidt, D. W.et al. 2018 Mshock, a thin layer Richtmyer-Meshkov instability experiment. Tech. Rep. Los Alamos National Lab. (LANL), Los Alamos, NM, United States.
[21] Donzis, D. A.2012aAmplification factors in shock-turbulence interactions: effect of shock thickness. Phys. Fluids24 (1), 011705.
[22] Donzis, D. A.2012bShock structure in shock-turbulence interactions. Phys. Fluids24 (12), 126101.
[23] Ducros, F., Laporte, F., Souleres, T., Guinot, V., Moinat, P. & Caruelle, B.2000High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys.161 (1), 114-139. · Zbl 0972.76066
[24] Fiscaletti, D., Elsinga, G. E., Attili, A., Bisetti, F. & Buxton, O. R. H.2016Scale dependence of the alignment between strain rate and rotation in turbulent shear flow. Phys. Rev. F1 (6), 064405. · Zbl 1382.74045
[25] Gao, X., Bermejo-Moreno, I., Larsson, J., Fu, L. & Lele, S. K.2018Scalar mixing under shock/turbulence interaction: DNS, statistical and geometric analyses. In Proceedings of the 2018 Summer Program, p. 165. Center for Turbulence Research.
[26] Gonzalez, M.2012Analysis of scalar dissipation in terms of vorticity geometry in isotropic turbulence. J. Turbul.13 (1), N41. · Zbl 1273.76122
[27] Griffond, J.2005Linear interaction analysis applied to a mixture of two perfect gases. Phys. Fluids17 (8), 086101. · Zbl 1187.76187
[28] Griffond, J.2006Linear interaction analysis for Richtmyer-Meshkov instability at low Atwood numbers. Phys. Fluids18 (5), 054106. · Zbl 1185.76606
[29] Hannappel, R. & Friedrich, R.1995Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res.54 (3), 205-221. · Zbl 0853.76047
[30] Hejranfar, K. & Rahmani, S.2019An assessment of shock-disturbances interaction considering real gas effects. Trans. ASME J. Fluids Engng141 (1), 011201.
[31] Hesselink, L. & Sturtevant, B.1988Propagation of weak shocks through a random medium. J. Fluid Mech.196, 513-553.
[32] Hickel, S., Egerer, C. P. & Larsson, J.2014Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction. Phys. Fluids26 (10), 106101.
[33] Huete, C., Sánchez, A. L. & Williams, F. A.2013Theory of interactions of thin strong detonations with turbulent gases. Phys. Fluids25 (7), 076105.
[34] Huete, C., Sánchez, A. L. & Williams, F. A.2014Linear theory for the interaction of small-scale turbulence with overdriven detonations. Phys. Fluids26 (11), 116101.
[35] Jackson, T. L., Hussaini, M. Y. & Ribner, H. S.1993Interaction of turbulence with a detonation wave. Phys. Fluids5 (3), 745-749. · Zbl 0776.76040
[36] Jackson, T. L., Kapila, A. K. & Hussaini, M. Y.1990Convection of a pattern of vorticity through a reacting shock wave. Phys. Fluids2 (7), 1260-1268.
[37] Jacquin, L., Cambon, C. & Blin, E.1993Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids5 (10), 2539-2550. · Zbl 0799.76029
[38] Jahanbakhshi, R. & Madnia, C. K.2016Entrainment in a compressible turbulent shear layer. J. Fluid Mech.797, 564-603.
[39] Jamme, S., Cazalbou, J., Torres, F. & Chassaing, P.2002Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turbul. Combust.68 (3), 227-268. · Zbl 1051.76576
[40] Karimi, M. & Girimaji, S. S.2016Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows. Phys. Rev. E93 (4), 041102.
[41] Kerr, R. M.1985Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech.153, 31-58. · Zbl 0587.76080
[42] Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A. & Ito, Y.2016Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave. J. Fluid Mech.802, 108-146. · Zbl 06755581
[43] Kolmogorov, A. N.1941The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS30, 301-305.
[44] Larsson, J.2009Blending technique for compressible inflow turbulence: algorithm localization and accuracy assessment. J. Comput. Phys.228 (4), 933-937. · Zbl 1330.76059
[45] Larsson, J., Bermejo-Moreno, I. & Lele, S. K.2013Reynolds-and Mach-number effects in canonical shock-turbulence interaction. J. Fluid Mech.717, 293-321. · Zbl 1284.76241
[46] Larsson, J. & Lele, S. K.2009Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids21 (12), 126101. · Zbl 1183.76296
[47] Lee, K., Girimaji, S. S. & Kerimo, J.2009Effect of compressibility on turbulent velocity gradients and small-scale structure. J. Turbul.10, N9.
[48] Lee, S., Lele, S. K. & Moin, P.1993Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech.251, 533-562.
[49] Lee, S., Lele, S. K. & Moin, P.1994Corrigendum: direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech.264, 373-374.
[50] Lee, S., Lele, S. K. & Moin, P.1997Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech.340, 225-247. · Zbl 0899.76194
[51] Lele, S. K.1992Shock-jump relations in a turbulent flow. Phys. Fluids4 (12), 2900-2905. · Zbl 0762.76050
[52] Livescu, D. & Ryu, J.2016Vorticity dynamics after the shock-turbulence interaction. Shock Waves26 (3), 241-251.
[53] Lombardini, M., Pullin, D. I. & Meiron, D. I.2012Transition to turbulence in shock-driven mixing: a Mach number study. J. Fluid Mech.690, 203-226. · Zbl 1241.76250
[54] Mahesh, K., Lele, S. K. & Moin, P.1997The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech.334, 353-379. · Zbl 0899.76193
[55] Marble, F. E., Hendricks, G. J. & Zukoski, E. E.1989Progress toward shock enhancement of supersonic combustion processes. In Turbulent Reactive Flows, pp. 932-950. Springer.
[56] Menon, S.1989 Shock-wave-induced mixing enhancement in scramjet combustors. AIAA Paper 89-0104.
[57] Misra, A. & Pullin, D. I.1997A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids9 (8), 2443-2454. · Zbl 1185.76770
[58] Moore, F. K.1953 Unsteady oblique interaction of a shock wave with a plane disturbances. Tech. Rep. NACA 1165.
[59] Ni, Q.2015Compressible turbulent mixing: effects of Schmidt number. Phys. Rev. E91 (5), 053020.
[60] Ni, Q.2016Compressible turbulent mixing: effects of compressibility. Phys. Rev. E93 (4), 043116.
[61] Obukhov, A. M.1949Structure of temperature field in turbulent flow. Ser. Geogr. i Goofiz.XIII (1), 58-69.
[62] Orlicz, G. C., Balasubramanian, S., Vorobieff, P. & Prestridge, K. P.2015Mixing transition in a shocked variable-density flow. Phys. Fluids27 (11), 114102.
[63] Pan, L. & Scannapieco, E.2010Mixing in supersonic turbulence. Astrophys. J.721 (2), 1765.
[64] Pan, L. & Scannapieco, E.2011Passive scalar structures in supersonic turbulence. Phys. Rev. E83 (4), 045302.
[65] Pantano, C. & Sarkar, S.2002A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech.451, 329-371. · Zbl 1156.76403
[66] Parashar, N., Sinha, S. S. & Srinivasan, B.2019Lagrangian investigations of velocity gradients in compressible turbulence: lifetime of flow-field topologies. J. Fluid Mech.872, 492-514. · Zbl 1430.76206
[67] Pirozzoli, S. & Grasso, F.2004DNS of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids16 (12), 4386-4407. · Zbl 1187.76418
[68] Pullin, D. I.2000A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids12 (9), 2311-2319. · Zbl 1184.76439
[69] Quadros, R. & Sinha, K.2016Modelling of turbulent energy flux in canonical shock-turbulence interaction. Intl J. Heat Fluid Flow61, 626-635.
[70] Quadros, R., Sinha, K. & Larsson, J.2016aKovasznay mode decomposition of velocity-temperature correlation in canonical shock-turbulence interaction. Flow Turbul. Combust.97 (3), 787-810.
[71] Quadros, R., Sinha, K. & Larsson, J.2016bTurbulent energy flux generated by shock/homogeneous-turbulence interaction. J. Fluid Mech.796, 113-157.
[72] Reese, D. T., Ames, A. M., Noble, C. D., Oakley, J. G., Rothamer, D. A. & Bonazza, R.2018Simultaneous direct measurements of concentration and velocity in the Richtmyer-Meshkov instability. J. Fluid Mech.849, 541-575. · Zbl 1415.76283
[73] Ribner, H. S.1953 Convection of a pattern of vorticity through a shock wave. Tech. Rep. NACA TN-2864.
[74] Ribner, H. S.1954 Shock-turbulence interaction and the generation of noise. Tech. Rep. NACA 1233.
[75] Ryu, J. & Livescu, D.2014Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. J. Fluid Mech.756, R1.
[76] Schwarzkopf, J. D., Livescu, D., Baltzer, J. R., Gore, R. A. & Ristorcelli, J. R.2016A two-length scale turbulence model for single-phase multi-fluid mixing. Flow Turbul. Combust.96 (1), 1-43.
[77] Sinha, K., Mahesh, K. & Candler, G. V.2003Modeling shock unsteadiness in shock/turbulence interaction. Phys. Fluids15 (8), 2290-2297. · Zbl 1186.76484
[78] Suman, S. & Girimaji, S. S.2010Velocity gradient invariants and local flow-field topology in compressible turbulence. J. Turbul.11, N2.
[79] Svärd, M. & Nordström, J.2014Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys.268, 17-38. · Zbl 1349.65336
[80] Tian, Y., Jaberi, F. A., Li, Z. & Livescu, D.2017Numerical study of variable density turbulence interaction with a normal shock wave. J. Fluid Mech.829, 551-588. · Zbl 07136094
[81] Vaghefi, N. S. & Madnia, C. K.2015Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech.774, 67-94.
[82] Wang, J., Shi, Y., Wang, L., Xiao, Z., He, X. & Chen, S.2012Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech.713, 588-631. · Zbl 1284.76214
[83] Wouchuk, J. G., Huete, C. & Velikovich, A. L.2009Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E79 (6), 066315.
[84] Yu, J. & Lu, X.2019Topological evolution near the turbulent/non-turbulent interface in turbulent mixing layer. J. Turbul.20 (5), 300-321.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.