×

zbMATH — the first resource for mathematics

On a topological counterpart of regularization for holonomic \(\mathscr{D}\)-modules. (Sur un analogue topologique de la régularisation pour les \(\mathscr{D}\)-modules holonomes.) (English. French summary) Zbl 07282221
Summary: On a complex manifold, the embedding of the category of regular holonomic \(\mathscr{D}\)-modules into that of holonomic \(\mathscr{D}\)-modules has a left quasi-inverse functor \(\mathscr{M}\rightarrow\mathscr{M}_{\text{reg}}\), called regularization. Recall that \(\mathscr{M}_{\text{reg}}\) is reconstructed from the de Rham complex of \(\mathscr{M}\) by the regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification. Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspondence. Here, we study some of the properties of the sheafification functor. In particular, we provide a stalk formula for the sheafification of enhanced specialization and microlocalization.
MSC:
32C38 Sheaves of differential operators and their modules, \(D\)-modules
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D’Agnolo, Andrea; Kashiwara, Masaki, Riemann-Hilbert correspondence for holonomic D-modules, Publ. Math. Inst. Hautes Études Sci., 123, 69-197 (2016) · Zbl 1351.32017
[2] D’Agnolo, Andrea; Kashiwara, Masaki, A microlocal approach to the enhanced Fourier-Sato transform in dimension one, Adv. Math., 339, 1-59 (2018) · Zbl 1410.32007
[3] D’Agnolo, Andrea; Kashiwara, Masaki, Enhanced perversities, J. reine angew. Math., 751, 185-241 (2019) · Zbl 1423.32015
[4] D’Agnolo, Andrea; Kashiwara, Masaki, Enhanced specialization and microlocalization (2019) · Zbl 1423.32015
[5] Guillermou, Stéphane; Schapira, Pierre, Homological mirror symmetry and tropical geometry, 15, Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, 43-85 (2014), Springer, Cham · Zbl 1319.32006
[6] Ito, Yohei; Takeuchi, Kiyoshi, On irregularities of Fourier transforms of regular holonomic \(\mathcal{D} \)-modules, Adv. Math., 366, 107093, 62 (2020) · Zbl 07183749
[7] Kashiwara, Masaki, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20, 2, 319-365 (1984) · Zbl 0566.32023
[8] Kashiwara, Masaki, Riemann-Hilbert correspondence for irregular holonomic \(\mathcal{D} \)-modules, Japan. J. Math., 11, 1, 113-149 (2016) · Zbl 1351.32001
[9] Kashiwara, Masaki; Schapira, Pierre, Sheaves on manifolds, 292 (1990), Springer-Verlag: Springer-Verlag, Berlin, Heidelberg · Zbl 0709.18001
[10] Kashiwara, Masaki; Schapira, Pierre, Ind-sheaves, 271 (2001), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 0993.32009
[11] Kashiwara, Masaki; Schapira, Pierre, Autour de l’analyse microlocale, 284, Microlocal study of ind-sheaves. I. Micro-support and regularity, 143-164 (2003), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1053.35009
[12] Kashiwara, Masaki; Schapira, Pierre, Regular and irregular holonomic D-modules, 433 (2016), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1354.32008
[13] Tamarkin, Dmitry, Algebraic and analytic microlocal analysis, 269, Microlocal condition for non-displaceability, 99-223 (2018), Springer, Cham · Zbl 1416.35019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.