×

Electron transport in multi-terminal graphene nanodevice with inclined cross structures. (English) Zbl 1284.82115

Summary: The DC and AC transport properties are investigated in multi-terminal graphene nanoribbon (GNR) devices. The devices are composed of three or four graphene ribbons connected with different angles. It is found that DC and AC conductances depend on the structural configurations and ribbon properties. In the vicinity of Dirac point, the intersection of graphene ribbons forms band mixing and results in resonant or anti-resonant states. The edge and width, as well as, the angles of the graphene ribbons influence the DC and AC transport properties drastically. These properties can be used to build future graphene-based nanoelectronics.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
82C70 Transport processes in time-dependent statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1063/1.2798593 · doi:10.1063/1.2798593
[2] DOI: 10.1063/1.3257731 · doi:10.1063/1.3257731
[3] DOI: 10.1103/PhysRevLett.104.066805 · doi:10.1103/PhysRevLett.104.066805
[4] DOI: 10.1142/S0217984912500844 · Zbl 1263.82087 · doi:10.1142/S0217984912500844
[5] DOI: 10.1088/0957-4484/18/42/424033 · doi:10.1088/0957-4484/18/42/424033
[6] DOI: 10.1103/PhysRevB.71.125307 · doi:10.1103/PhysRevB.71.125307
[7] DOI: 10.1016/j.physleta.2012.06.033 · doi:10.1016/j.physleta.2012.06.033
[8] DOI: 10.1063/1.4714506 · doi:10.1063/1.4714506
[9] DOI: 10.1142/S0217984912500479 · Zbl 1262.82051 · doi:10.1142/S0217984912500479
[10] DOI: 10.1063/1.2803074 · doi:10.1063/1.2803074
[11] DOI: 10.1109/TED.2009.2017646 · doi:10.1109/TED.2009.2017646
[12] DOI: 10.1063/1.3206915 · doi:10.1063/1.3206915
[13] DOI: 10.1088/0953-8984/5/50/017 · doi:10.1088/0953-8984/5/50/017
[14] DOI: 10.1007/BF01307664 · doi:10.1007/BF01307664
[15] DOI: 10.1103/PhysRevA.54.4022 · doi:10.1103/PhysRevA.54.4022
[16] Landauer R., IBM J. Res. Dev. 3 pp 233–
[17] DOI: 10.1017/CBO9780511805776 · doi:10.1017/CBO9780511805776
[18] DOI: 10.1063/1.100966 · doi:10.1063/1.100966
[19] DOI: 10.1103/PhysRevB.56.13026 · doi:10.1103/PhysRevB.56.13026
[20] DOI: 10.1103/PhysRevB.54.R11090 · doi:10.1103/PhysRevB.54.R11090
[21] DOI: 10.1103/PhysRevB.27.6178 · doi:10.1103/PhysRevB.27.6178
[22] DOI: 10.1063/1.112872 · doi:10.1063/1.112872
[23] DOI: 10.1103/PhysRevB.81.165425 · doi:10.1103/PhysRevB.81.165425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.