×

Geometrical properties and turbulent flame speed measurements in stationary premixed V-flames using direct numerical simulation. (English) Zbl 1432.76135

Flow Turbul. Combust. 87, No. 2-3, 237-259 (2011); erratum ibid. 87, No. 4, 725-728 (2011).
Summary: Three dimensional, fully compressible direct numerical simulations (DNS) of premixed turbulent flames are carried out in a V-flame configuration. The governing equations and the numerical implementation are described in detail, including modifications made to the Navier-Stokes Characteristic Boundary Conditions (NSCBC) to accommodate the steep transverse velocity and composition gradients generated when the flame crosses the boundary. Three cases, at turbulence intensities, \(u^{\prime}/s _{L }\), of 1, 2, and 6 are considered. The influence of the flame holder on downstream flame properties is assessed through the distributions of the surface-conditioned displacement speed, curvature and tangential strain rates, and compared to data from similarly processed planar flames. The distributions are found to be indistinguishable from planar flames for distances greater than about \(17\delta _{th}\) downstream of the flame holder, where \(\delta _{th}\) is the laminar flame thermal thickness. Favre mean fields are constructed, and the growth of the mean flame brush is found to be well described by simple Taylor type diffusion. The turbulent flame speed, \(s _{T }\) is evaluated from an expression describing the propagation speed of an isosurface of the mean reaction progress variable \(\tilde{c}\) in terms of the imbalance between the mean reactive, diffusive, and turbulent fluxes within the flame brush. The results are compared to the consumption speed, \(s _{C }\), calculated from the integral of the mean reaction rate, and to the predictions of a recently developed flame speed model [H. Kolla et al., “Scalar dissipation rate modeling and its validation”, Combust. Sci. Technol. 181, No. 3, 518–535 (2009; doi:10.1080/00102200802612419)]. The model predictions are improved in all cases by including the effects of mean molecular diffusion, and the overall agreement is good for the higher turbulence intensity cases once the tangential convective flux of \(\tilde{c}\) is taken into account.

MSC:

76F80 Turbulent combustion; reactive turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Smith, K.O., Gouldin, F.C.: Experimental investigation of flow turbulence effects on premixed methane-air flames. Prog. Astronaut. Aeronaut. 58, 37–54 (1978)
[2] Gouldin, F.C.: Combustion intensity and burning rate integral of premixed flames. In: Twenty-Sixth Symposium (International) on Combustion, pp. 381–388 (1996)
[3] Veynante, D., Duclos, J.M., Piana, J.: Experimental analysis of flamelet models for premixed turbulent combustion. In: Twenty-Fifth Symposium (International) on Combustion, pp. 1249–1256 (1994)
[4] Shepherd, I.G.: Flame surface density and burning rate in premixed turbulent flames. In: Twenty-Sixth Symposium (International) on Combustion, pp. 373–379 (1996)
[5] Sattler, S.S., Knaus, D.A., Gouldin, F.C.: Determination of three-dimensional flamelet orientation distributions in turbulent V-flames from two-dimensional image data. Proc. Combust. Inst. 29, 1785–1792 (2002) · doi:10.1016/S1540-7489(02)80216-4
[6] Alshaalan, T.M., Rutland, C.J.: Turbulence, scalar transport, and reaction rates in flame-wall interaction. In: Twenty-Seventh Symposium (International) on Combustion, pp. 793–799 (1998)
[7] Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005) · doi:10.1016/j.combustflame.2005.08.023
[8] Bell, J.B., Day, M.S., Shepherd, I.G., Johnson, M.R., Cheng, R.K., Grcar, J.F., Beckner, V.E., Lijewski, M.: Numerical simulation of a laboratory-scale turbulent V-flame. P. Natl. Acad. Sci. USA 102(29), 10006–10011 (2005) · doi:10.1073/pnas.0504140102
[9] Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modeling and its validation. Combust. Sci. Technol. 181(3), 518–535 (2009) · doi:10.1080/00102200802612419
[10] Swaminathan, N., Bray, K.N.C.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame 143, 549–565 (2005) · doi:10.1016/j.combustflame.2005.08.020
[11] Jenkins, K.W., Cant, R.S.: In: Knight, D., Sakell, L. (eds.) Proceedings of the 2nd AFOSR Conference on DNS and LES, Rutgers University, pp. 191–202 . Kluwer, Dordrecht (1999) · Zbl 0948.76557
[12] CHEMKIN: http://www.reactiondesign.com . Accessed 27 February 2010
[13] Kennedy, C.A., Carpenter, M.H., Lewis, M.L.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000) · Zbl 0986.76060 · doi:10.1016/S0168-9274(99)00141-5
[14] Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992) · Zbl 0766.76084 · doi:10.1016/0021-9991(92)90046-2
[15] Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. RT Edwards (2005)
[16] Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous reacting effects. Combust. Theory Model. 11(2), 259–286 (2007) · Zbl 1121.80342 · doi:10.1080/13647830600898995
[17] Batchelor, G.K., Townsend, A.A.: Decay of turbulence in the final period. Proc. R. Soc. Lond. A 194, 527–543 (1948) · Zbl 0032.22602 · doi:10.1098/rspa.1948.0095
[18] Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. NASA TM 81315, NASA Ames Research Center, CA (1981)
[19] Prosser, R.: Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows. I. Inviscid flows. J. Comput. Phys. 207, 736–768 (2005) · Zbl 1213.76142 · doi:10.1016/j.jcp.2005.01.027
[20] Sutherland, J.C., Kennedy, C.A.: Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502–524 (2003) · Zbl 1134.76736 · doi:10.1016/S0021-9991(03)00328-0
[21] Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000) · Zbl 0955.76002
[22] Lipatnikov, A.N., Chomaik, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Pror. Energy Combust. Sci. 28, 1–74 (2002) · doi:10.1016/S0360-1285(01)00007-7
[23] Haworth, D.C., Poinsot, T.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992) · doi:10.1017/S0022112092003124
[24] Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996) · doi:10.1016/0010-2180(96)00011-9
[25] Chakraborty, N., Cant, R.S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame 137, 129–147 (2004) · doi:10.1016/j.combustflame.2004.01.007
[26] Cant, R.S., Rutland, C., Trouve, A.: Statistics for laminar flame modelling. In: Proceedings of the Summer Program 1990, Center for Turbulence Research, pp. 271–279 (1990)
[27] Chen, J.H., Echekki, T., Kollmann, W.: The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combust. Flame 116, 15–48 (1999) · doi:10.1016/S0010-2180(98)00026-1
[28] Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26, 445–469 (1988) · Zbl 0641.76054 · doi:10.1016/0020-7225(88)90004-3
[29] Kolla, H., Rogerson, J.W., Swaminathan, N.: Validation of a turbulent flame speed model across combustion regimes. Combust. Sci. Technol. 182(3), 284–308 (2010) · doi:10.1080/00102200903341587
[30] Shepherd, I.G., Kostiuk, L.W.: The burning rate of premixed flames in divergent flows. Combust. Flame 96, 371–380 (1994) · doi:10.1016/0010-2180(94)90105-8
[31] Libby, P.A.: Theoretical analysis of the effect of gravity on premixed turbulent flames. Combust. Sci. Technol. 68, 15–33 (1989) · doi:10.1080/00102208908924067
[32] Abdel-Gayed, R.G., Bradley, D., Lawes, M.: Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414, 389–413 (1987) · doi:10.1098/rspa.1987.0150
[33] Herweg, R., Maly, R.R.: A fundamental model for flame kernel formation in S.I. engines. SAE Transact. 101, 1947 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.