×

An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions. (English) Zbl 1377.92093

Summary: Mosquito-borne diseases are global health problems, which mainly affect low-income populations in tropics and subtropics. In order to prevent the transmission of mosquito-borne diseases, the intracellular symbiotic bacteria named as Wolbachia is becoming a promising candidate to interrupt the virus transmission. In this paper, an impulsive mosquito population model with general birth and death rate functions is established to study the cytoplasmic incompatibility (CI) effect caused by mating of Wolbachia-infected males and uninfected females. The dynamics of the spread of Wolbachia in mosquito population are studied, and the strategies of mosquito extinction or replacing Wolbachia-uninfected mosquitoes with Wolbachia-infected mosquitoes are analyzed. Moreover, the results are applied to models with specific birth and death rate functions. It is shown that strategies may be different due to different birth and death rate functions, the type of Wolbachia strains and the initial number of Wolbachia-infected mosquitoes. Furthermore, numerical simulations are conducted to illustrate our conclusions.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gubler, D. J., Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol., 10, 100-103 (2002)
[2] Messina, J. P.; Brady, O. J.; Pigott, D. M.; Golding, N.; Kraemer, M. U.; Scott, T. W.; Wint, G. W.; Smith, D. L.; Hay, S. I., The many projected futures of dengue, Nat. Rev. Microbiol., 13, 230-239 (2015)
[3] Screaton, G.; Mongkolsapaya, J.; Yacoub, S.; Roberts, C., New insights into the immunopathology and control of dengue virus infection, Nat. Rev. Immunol., 15, 745-759 (2015)
[4] Rossi, S. L.; Ross, T. M.; Evans, J. D., West Nile virus, Clin. Lab. Med., 30, 47-65 (2010)
[5] Bakonyi, T.; Ferenczi, E.; Erdélyi, K.; Kutasi, O.; Csörgő, T.; Seidel, B.; Weissenböck, H.; Brugger, K.; Bán, E.; Nowotny, N., Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009, Vet. Microbiol., 165, 61-70 (2013)
[6] Kramer, L. D.; Li, J.; Shi, P.-Y., West Nile virus, Lancet Neurol., 6, 171-181 (2007)
[7] Butler, D., Zika virus: Brazil’s surge in small-headed babies questioned by report, Nature, 530, 13-14 (2016)
[8] Tang, H.; Hammack, C.; Ogden, S. C.; Wen, Z.; Qian, X.; Li, Y.; Yao, B.; Shin, J.; Zhang, F.; Lee, E. M., Zika virus infects human cortical neural progenitors and attenuates their growth, Cell Stem Cell, 18, 587-590 (2016)
[9] Scully, C.; Robinson, A., Check before you travel: Zika virus-another emerging global health threat, Br. Dent. J., 220, 265-267 (2016)
[10] Glunt, K. D.; Abílio, A. P.; Bassat, Q.; Bulo, H.; Gilbert, A. E.; Huijben, S.; Manaca, M. N.; Macete, E.; Alonso, P.; Paaijmans, K. P., Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique, Malaria J., 14, 1-7 (2015)
[11] Hemingway, J.; Ranson, H.; Magill, A.; Kolaczinski, J.; Fornadel, C.; Gimnig, J.; Coetzee, M.; Simard, F.; Roch, D. K.; Hinzoumbe, C. K., Averting a malaria disaster: will insecticide resistance derail malaria control?, Lancet, 387, 1785-1788 (2016)
[12] Ranson, H.; Lissenden, N., Insecticide resistance in African anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control, Trends Parasitol., 32, 187-196 (2016)
[13] Blagrove, M. S.; Arias Goeta, C.; Failloux, A. B.; Sinkins, S. P., Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proc. Natl. Acad. Sci. USA, 109, 255-260 (2012)
[14] Caragata, E. P.; Dutra, H. L.; Moreira, L. A., Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia, Trends Parasitol., 32, 207-218 (2016)
[15] Walker, T.; Johnson, P.; Moreira, L.; Iturbe-Ormaetxe, I.; Frentiu, F.; McMeniman, C.; Leong, Y. S.; Dong, Y.; Axford, J.; Kriesner, P., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476, 450-453 (2011)
[16] Werren, J. H.; Baldo, L.; Clark, M. E., Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 6, 741-751 (2008)
[17] Atyame, C. M.; Labbé, P.; Rousset, F.; Beji, M.; Makoundou, P.; Duron, O.; Dumas, E.; Pasteur, N.; Bouattour, A.; Fort, P., Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations, Mol. Ecol., 24, 508-521 (2015)
[18] Konecka, E.; Olszanowski, Z., A screen of maternally inherited microbial endosymbionts in oribatid mites (acari: Oribatida), Microbiology, 161, 1561-1571 (2015)
[19] Kern, P.; Cook, J. M.; Kageyama, D.; Riegler, M., Double trouble: combined action of meiotic drive and Wolbachia feminization in Eurema butterflies, Biol. Lett., 11, 1-4 (2015)
[20] Engelstädter, J.; Telschow, A.; Hammerstein, P., Infection dynamics of different Wolbachia-types within one host population, J. Theoret. Biol., 231, 345-355 (2004) · Zbl 1447.92420
[21] Vautrin, E.; Charles, S.; Genieys, S.; Vavre, F., Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models, J. Theoret. Biol., 245, 197-209 (2007) · Zbl 1451.92314
[22] Farkas, J. Z.; Hinow, P., Structured and unstructured continuous models for Wolbachia infections, Bull. Math. Biol., 72, 2067-2088 (2010) · Zbl 1201.92044
[23] Keeling, M.; Jiggins, F.; Read, J., The invasion and coexistence of competing Wolbachia strains, Heredity, 91, 382-388 (2003)
[24] Schraiber, J. G.; Kaczmarczyk, A. N.; Kwok, R.; Park, M.; Silverstein, R.; Rutaganira, F. U.; Aggarwal, T.; Schwemmer, M. A.; Hom, C. L.; Grosberg, R. K., Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theoret. Biol., 297, 26-32 (2012) · Zbl 1336.92085
[25] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74, 743-770 (2014) · Zbl 1303.92124
[26] Hughes, H.; Britton, N. F., Modelling the use of Wolbachia to control dengue fever transmission, Bull. Math. Biol., 75, 796-818 (2013) · Zbl 1273.92034
[27] Huang, M.; Tang, M.; Yu, J., Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58, 77-96 (2015) · Zbl 1337.35156
[28] Huang, M. G.; She, Y. J.; Chao, H. L.; Bo, Z., Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59, 7, 1-18 (2016)
[29] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106, 32-44 (2015) · Zbl 1343.92482
[30] Rock, K. S.; Wood, D. A.; Keeling, M. J., Age-and bite-structured models for vector-borne diseases, Epidemics, 12, 20-29 (2015)
[31] Xu, X.; Xiao, Y.; Cheke, R. A., Models of impulsive culling of mosquitoes to interrupt transmission of west nile virus to birds, Appl. Math. Model., 39, 3549-3568 (2015) · Zbl 1443.92188
[32] Zhang, X.; Tang, S.; Cheke, R. A., Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control, Nonlinear Anal. RWA, 22, 236-258 (2015) · Zbl 1327.92071
[33] Kriesner, P.; Hoffmann, A. A.; Lee, S. F.; Turelli, M.; Weeks, A. R., Rapid sequential spread of to Wolbachia variants in drosophila simulans, Plos Pathog., 9, 9, 289-290 (2013)
[35] Ndii, M. Z.; Hickson, R.; Allingham, D.; Mercer, G., Modelling the transmission dynamics of dengue in the presence of wolbachia, Math. Biosci., 262, 157-166 (2015) · Zbl 1315.92083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.