×

Valuation of boundary-linked assets by stochastic boundary value problems solved with a wavelet-collocation algorithm. (English) Zbl 1137.65311

Summary: This article studies the valuation of boundary-linked assets and their derivatives in continuous-time markets. Valuing boundary-linked assets requires the solution of a stochastic differential equation with boundary conditions, which, often, is not Markovian. We propose a wavelet-collocation algorithm for solving a Milstein approximation to the stochastic boundary problem. Its convergence properties are studied. Furthermore, we value boundary-linked derivatives using Malliavin calculus and Monte Carlo methods. We apply these ideas to value European call options of boundary-linked assets.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
91G60 Numerical methods (including Monte Carlo methods)

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Nualart, D.; Pardoux, E., Boundary value problems for stochastic differential equations, Annals of Probability, 19, 1118-1144 (1991) · Zbl 0736.60052
[2] Huang, Z., On the generalized sample solutions of stochastic boundary value problems, Stochastics, 11, 237-248 (1984) · Zbl 0529.60053
[3] Ocone, D.; Pardoux, E., Linear stochastic integrals and the Malliavin calculus, Probability Theory and Related Fields, 82, 439-526 (1998)
[4] Nualart, D.; Pardoux, E., Second order stochastic differential equations with Dirichlet boundary conditions, Stochastic Processes and Its Applications, 39, 1-24 (1991) · Zbl 0745.60061
[5] Malliaris, A. G.; Brock, W. A., Stochastic Methods in Economics and Finance (1982), Elsevier Pub.: Elsevier Pub. Amsterdam · Zbl 0693.90001
[6] Ferrante, M.; Kohatsu-Higa, A.; Sanz, A., Strong approximations for stochastic differential equations with boundary condition, Stochastic Processes and Their Applications, 61, 323-337 (1996) · Zbl 0856.60060
[7] Kohatsu-Higa, A., Weak approximations. A Malliavin calculus approach, Mathematics of Computation, 70, 135-172 (2001) · Zbl 0956.60059
[8] Alabert, A.; Ferrante, M.; Nualart, D., Markov field property of stochastic differential equations, Annals of Probability, 23, 1262-1288 (1995) · Zbl 0841.60041
[9] Alabert, A.; Ferrante, M., Linear stochastic differential equations with functional boundary conditions (2002), Preprint
[10] Hida, T.; Kuo, H. H.; Potthoff, J.; Streit, L., White Noise Analysis (1993), Kluwer
[11] Holden, H.; Lindstrøm, T.; Øksendal, B.; Uboe, J.; Zhang, T. S., Stochastic partial differential equations-A modelling, white noise functional approach, (Probability and Its Applications (1996), Birkhauser: Birkhauser Boston, MA) · Zbl 0834.60068
[12] Karatzas, I.; Ocone, D., A generalized Clark representation formula with application to optimal portfolios, Stochastics and Stochastic Reports, 34, 187-220 (1991) · Zbl 0727.60070
[13] Bell, D. R., The Malliavin Calculus (1987), Wiley: Wiley New York, Longman, Burnt Mill, Harlow, Essex, U.K. · Zbl 0678.60042
[14] Ustunel, A. S., An Introduction to Analysis on Wiener Space, (Lecture Notes in Mathematics (1995), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1003.46027
[15] Nualart, D., The Malliavin Calculus and Related Topics (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0837.60050
[16] Øksendal, B., An Introduction to Malliavin Calculus with Applications to Economics, (Lecture Notes (1997), Dept. of Mathematics, University of Oslo: Dept. of Mathematics, University of Oslo Norway)
[17] Houdré, H.; Pérez-Abreu, V.; Üstünel, A. S., Multiple Itô integrals: An introductory survey, (Houndré, C.; Pérez-Abreu, V., Chaos Expansion, Multiple Wiener-Itô Integrals and Their Application (1994), EEUU, CRC Press: EEUU, CRC Press Boca Raton, FL), 1-33 · Zbl 0877.60035
[18] Galperin, E. A., Spherical algorithms and evaluation of the fixed point set, Nonlinear Analysis, Theory, Methods & Applications, 23, 12, 1545-1557 (1994) · Zbl 0833.49019
[19] Ascher, U. M.; Mattheij, M. M.; Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, (Classics in Applied Mathematics, Volume 13 (1995), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA) · Zbl 0671.65063
[20] Haar, A., Zur Theorie der orthogonalen Funktionen-Systeme, Math. Ann., 69, 331-371 (1910) · JFM 41.0469.03
[21] Mallat, S., A theory of multiresolution signal decomposition, The wavelet representation, IEEE Trans. Pattern Annal. Machine Intell., 11, 674-693 (1989) · Zbl 0709.94650
[22] Meyer, Y., Wavelets and Operators (1992), Cambridge University Press: Cambridge University Press Cambridge, U.K., English translation from French, Ondelettes et Opérteurs, Volumes I and II, Hermann, Paris, (1990).
[23] Daubechies, I., Ten Lectures on Wavelets, (CBMS-NFS Series in Applied Mathematics (1992), SIAM: SIAM Philadelphia, PA), \((2^{nd}\) printing with corrections) · Zbl 0776.42018
[24] Meyer, Y., Wavelets: Algorithms and Applications (1993), SIAM: SIAM Philadelphia
[25] (Chui, C. K., Wavelets. A Tutorial in Theory and Applications (1992), Academic Press: Academic Press Boston, MA) · Zbl 0744.00020
[26] Walnut, D. F., An Introduction to Wavelets Analysis (2001), Birkhäuser: Birkhäuser Boston, MA
[27] Daubechies, I., Two recent results on wavelets, (Schumaker, L. L.; Webb, G., Recent Advances in Wavelet Analysis, Wavelet Analysis and Its Applications, Vol. 3 (1994), Academic Press: Academic Press Boston, MA), 237-257 · Zbl 0829.42021
[28] Milstein, G. N., Approximate integration of stochastic differential equations, Theory Probab. Appl., 19, 557-562 (1974) · Zbl 0314.60039
[29] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1999), Springer-Verlag: Springer-Verlag Berlin · Zbl 0701.60054
[30] Rheinboldt, W. C., Methods for Solving Systems of Nonlinear Equations, ((1998), SIAM: SIAM Philadelphia, PA) · Zbl 0871.65066
[31] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (SIAM Classics in Applied Mathematics, Vol. 16 (1996), SIAM: SIAM Philadelphia, PA) · Zbl 0579.65058
[32] Galperin, E. A., The Cubic Algorithm for Optimization and Control (1990), NP Research Publication Process de l’Université du Quebec à Montréal: NP Research Publication Process de l’Université du Quebec à Montréal Montreal · Zbl 0781.90080
[33] Delgado-Pineda, M.; Galperin, E., Global optimization in \(R_n\) with box constraints and applications: A MAPLE code, Mathl. Comput. Modelling, 38, 1/2, 77-97 (2003) · Zbl 1080.90071
[34] Tikhonov, A. N., On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSRN, 151, 3, 49-52 (1963)
[35] Maruyama, G., Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo, 4, 48-90 (1955) · Zbl 0053.40901
[36] Vainikko, (1967).; Vainikko, (1967).
[37] Comes, S. M.; Cortina, E., Convergence estimates for the wavelet Galerkin method, SIAM Journal on Numerical Analysis, 33, 1, 149-161 (1996) · Zbl 0845.65048
[38] Thomée, V., Convergence estimates for semi-discrete Galerkin methods for initial value problems, Lecture Notes in Math., 333, 243-262 (1973)
[39] Pardoux, E.; Peng, S., Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 14, 55-61 (1998) · Zbl 0692.93064
[40] Vainikko, G. M., Galerkin’s perturbation method and the general theory of approximate methods for nonlinear equations, USSR Comput. Math. and Math. Phys., 7, 1-41 (1967) · Zbl 0213.16201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.