zbMATH — the first resource for mathematics

On the Weibull cost estimation of building frames designed by simulated annealing. (English) Zbl 1337.62391
Summary: This paper proposes a general methodology to determine the number of numerical tests required to provide a solution for a heuristic optimization problem with a user-defined accuracy as compared to a global optimal solution. The methodology is based on the extreme value theory and is explained through a problem of cost minimization for reinforced concrete building frames. Specifically, 1000 numerical experiments were performed for the cost minimization of a two-bay and four-floor frame using the Simulated Annealing (SA) algorithm. Analysis of the results indicates that (a) a three-parameter Weibull distribution function fits the results well, (b) an objective and general procedure can be established to determine the number of experiments necessary to solve an optimization problem with a heuristic which generates independent random solutions, and (c) a small number of experiments is enough to obtain good results for the structural engineer.

62P30 Applications of statistics in engineering and industry; control charts
Full Text: DOI
[1] Grierson DE (1994) Practical optimization of structural steel frameworks. In: Adeli H (ed) Advances in design optimization. Taylor & Francis, London
[2] Hernández S, Fontan A (2002) Practical applications of design optimization. WIT Press, Southampton
[3] Dreo J, Petrowsky A, Siarry P, Taillard E, Chatterjee A (2006) Metaheuristics for hard optimization. Methods and case studies. Springer, Berlin
[4] van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Kluwer Academic, Dordrecht
[5] Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York · Zbl 0721.68056
[6] Adeli H, Sarma KC (2006) Cost optimization of structures. Fuzzy logic, genetic algorithms and parallel computing. Wiley, Chichester
[7] Goldberg DE, Samtani MP (1986) Engineering optimization via genetic algorithms. In: ASCE proceedings of the ninth conference on electronic computation, New York, pp 471–482
[8] Coello CA, Christiansen AD, Santos F (1997) A simple genetic algorithm for the design of reinforced concrete beams. Eng Comput 13(4):185–196 · Zbl 05470867 · doi:10.1007/BF01200046
[9] Panigrahi SK, Chakraverty S, Mishra BK (2009) Vibration based damage detection in a uniform strength beam using genetic algorithm. Meccanica. doi: 10.1007/s11012-009-9207-1 · Zbl 1258.74109
[10] Bassir DH, Zapico JL, González MP, Alonso R (2007) Identification of a spatial linear model based on earthquake-induced data and genetic algorithm with parallel selection. Int J Simul Multidiscip Des Optim 1(1):39–48 · doi:10.1051/ijsmdo:2007005
[11] Sid B, Domaszewski M, Peyraut F (2007) An adjacency representation for structural topology optimization using genetic algorithm. Int J Simul Multidiscip Des Optim 1(1):49–54 · doi:10.1051/ijsmdo:2007006
[12] Balling RJ, Yao X (1997) Optimization of reinforced concrete frames. ASCE J Struct Eng 123(2):193–202 · doi:10.1061/(ASCE)0733-9445(1997)123:2(193)
[13] Ceranic B, Fryer C, Bines RW (2001) An application of simulated annealing to the optimum design of reinforced concrete retaining structures. Comput Struct 79(17):1569–1581 · doi:10.1016/S0045-7949(01)00037-2
[14] González-Vidosa F, Yepes V, Alcalá J, Carrera M, Perea C, Payá-Zaforteza I (2008) Optimization of reinforced concrete structures by simulated annealing. In: Tan CM (ed) Simulated annealing. I-Tech Education and Publishing, Vienna, pp 307–320. Available in http://intechweb.org/book.php?id=37 . Accessed 6 Feb 2009
[15] Paya-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-optimization of reinforced concrete frames by simulated annealing. Eng Struct 31(7):1501–1508 · Zbl 1337.62391 · doi:10.1016/j.engstruct.2009.02.034
[16] Yepes V, Alcalá J, Perea C, González-Vidosa F (2008) A parametric study of optimum earth-retaining walls by simulated annealing. Eng Struct 30(3):821–830 · doi:10.1016/j.engstruct.2007.05.023
[17] Perea C, Alcalá J, Yepes V, González-Vidosa F, Hospitaler A (2008) Design of reinforced concrete bridge frames by heuristic optimization. Adv Eng Softw 39(3):676–688 · Zbl 05350413 · doi:10.1016/j.advengsoft.2007.07.007
[18] Martínez F, Yepes V, Hospitaler A, González-Vidosa F (2007) Ant colony optimization of reinforced concrete bridge piers of rectangular hollow section. In: Proceedings of the ninth international conference on the application of artificial intelligence to civil, structural and environmental engineering (AICIVIL-COMP2007), St. Julians, Malta, paper 38
[19] Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building frames by simulated annealing. Comput-Aided Civ Infrastruct Eng 23:596–610 · doi:10.1111/j.1467-8667.2008.00561.x
[20] Kicinger R, Arciszewski T, De Jong K (2005) Evolutionary computation and structural design: a survey of the state of the art. Comput Struct 83:1943–1978 · doi:10.1016/j.compstruc.2005.03.002
[21] Nieto F, Hernández S, Jurado JA (2009) Optimum design of long-span suspension bridges considering aeroelastic and kinematic constraints. Struct Multidiscip Optim 39(2):133–151 · Zbl 06227690 · doi:10.1007/s00158-008-0314-8
[22] Marannano G, Mariotti GV (2008) Structural optimization and experimental analysis of composite material panels for naval use. Meccanica 43(2):251–262 · Zbl 1275.74022 · doi:10.1007/s11012-008-9120-z
[23] Callegari M, Palpacelli MC (2008) Prototype design of a translating parallel robot. Meccanica 43(2):133–151 · Zbl 1137.70005 · doi:10.1007/s11012-008-9116-8
[24] Guadagni L (2008) Development of a collaborative optimization tool for the sizing design of aerospace structures. Int J Simul Multidiscip Des Optim 2(3):187–192 · doi:10.1051/ijsmdo:2008025
[25] McRoberts K (1971) A search model for evaluating combinatorially explosive problems. Oper Res 19:1331–1349 · Zbl 0228.90021 · doi:10.1287/opre.19.6.1331
[26] Golden BL, Alt FB (1979) Interval estimation of a global optimum for large combinatorial problems. Nav Res Logist Q 26(1):69–77 · Zbl 0397.90100 · doi:10.1002/nav.3800260108
[27] Bettinger P, Boston K, Kim YH, Zhu J (2007) Landscape-level optimization using tabu search and stand density-related forest management prescriptions. Eur J Oper Res 176:1265–1282 · Zbl 1102.90017 · doi:10.1016/j.ejor.2005.09.025
[28] Payá-Zaforteza I (2007) Optimización heurística de pórticos de edificación de hormigón armado (Heuristic optimization of reinforced concrete building frames). PhD thesis, Departamento de Ingeniería de la Construcción, Universidad Politécnica de Valencia, Valencia (in Spanish)
[29] Ministerio de Fomento (1998) EHE code of structural concrete. Ministerio de Fomento, Madrid (in Spanish)
[30] Ministerio de Fomento (1988) NBE AE-88. Code about the actions to be considered in buildings. Ministerio de Fomento, Madrid (in Spanish)
[31] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[32] Cerny V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Opt Theory Appl 45(1):41–51 · Zbl 0534.90091 · doi:10.1007/BF00940812
[33] Medina JR (2001) Estimation of incident and reflected waves using simulated annealing. ASCE J Waterw Port Coast Ocean Eng 127(4):213–221 · doi:10.1061/(ASCE)0733-950X(2001)127:4(213)
[34] Weibull W (1951) A statistical distribution function of wide applicability. ASME J Appl Mech Trans 18(3):293–297 · Zbl 0042.37903
[35] Fisher R, Tippett L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190 · JFM 54.0560.05 · doi:10.1017/S0305004100015681
[36] Conover WJ (1971) Practical nonparametric statistics. Wiley, New York
[37] Dannenbring DG (1977) Procedures for estimating optimal solution values for large combinatorial problems. Manag Sci 23(12):1273–1283 · Zbl 0377.90051 · doi:10.1287/mnsc.23.12.1273
[38] Vasko FJ, Wilson JR (1984) An efficient heuristic for large set covering problems. Nav Res Logist Q 31:163–171 · Zbl 0534.90064 · doi:10.1002/nav.3800310118
[39] ReliaSoft (2007) Weibull++7 user’s guide. Reliasoft, Tucson
[40] Efron B (1979) Bootstrap methods. Ann Stat 7:1–26 · Zbl 0406.62024 · doi:10.1214/aos/1176344552
[41] Zoubir AM, Boashash B (1998) The bootstrap and its application in signal processing. IEEE Signal Process Mag 15(1):56–67 · doi:10.1109/79.647043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.