×

Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. (English) Zbl 1330.65014

Summary: In this paper, we develop a new numerical method with asymptotic stability properties for solving stochastic differential equations (SDEs). The foundations for the new solver are the Steklov mean and an exact discretization for the deterministic version of the SDEs. Strong consistency and convergence properties are demonstrated for the proposed method. Moreover, a rigorous linear and nonlinear asymptotic stability analysis is carried out for the multiplicative case in a mean-square sense and for the additive case in a path-wise sense using the pullback limit. In order to emphasize the characteristics of the Steklov discretization we use as benchmarks the stochastic logistic equation and the Langevin equation with a nonlinear potential of the Brownian dynamics. We show that the Steklov method has mild stability requirements and allows long-time simulations in several applications.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Allen, E., Modeling with Itô Stochastic Differential Equations (2007), Springer · Zbl 1130.60064
[2] Gardiner, C., (Stochastic Methods: A Handbook for the Natural and Social Sciences. Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics (2009), Springer) · Zbl 1181.60001
[3] Van Kampen, N., (Stochastic Processes in Physics and Chemistry. Stochastic Processes in Physics and Chemistry, North-Holland Personal Library (1992), Elsevier Science) · Zbl 0974.60020
[4] Bokor, R. H., Stochastically stable one-step approximations of solutions of stochastic ordinary differential equations, Appl. Numer. Math., 44, 299-312 (2003) · Zbl 1015.65003
[5] Burrage, K.; Burrage, P. M.; Tian, T., Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. A: Math. Phys. Eng. Sci., 460, 373-402 (2004) · Zbl 1048.65004
[6] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Springer-Verlag · Zbl 0925.65261
[7] Milstein, G.; Platen, E.; Schurz, H., Balanced implicit methods for stiff stochastic systems, SIAM J. Numer. Anal., 35, 1010-1019 (1998) · Zbl 0914.65143
[8] Milstein, G. N., Quasi-symplectic methods for Langevin-type equations, IMA J. Numer. Anal., 23, 593-626 (2003) · Zbl 1055.65141
[9] Higham, D. J., A-stability and stochastic mean-square stability, BIT, 40, 404-409 (2000) · Zbl 0961.65003
[10] Higham, D. J., Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., 38, 753-769 (2000) · Zbl 0982.60051
[11] Saito, Y.; Mitsui, T., Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33, 2254-2267 (1996) · Zbl 0869.60052
[12] Kloeden, P. E.; Keller, H.; Schmalfuß, B., Towards a theory of random numerical dynamics, (Crauel, H.; Gundlach, M., Stochastic Dynamics (1999), Springer: Springer New York), 259-282 · Zbl 0930.93071
[13] Buckwar, E.; Riedler, M. G.; Kloeden, P. E., The numerical stability of stochastic ordinary differential equations with additive noise, Stoch. Dyn., 11, 265-281 (2011) · Zbl 1236.60067
[14] Brańka, A.; Heyes, D., Algorithms for Brownian dynamics simulation, Phys. Rev. E, 58, 2611-2615 (1998)
[15] Bussi, G.; Parrinello, M., Accurate sampling using Langevin dynamics, Phys. Rev. E, 75, 056707 (2007)
[16] Ermak, D. L.; McCammon, J.a., Brownian dynamics with hydrodynamic interactions, J. Chem. Phys., 69, 1352 (1978)
[17] Schurz, H., Modeling, analysis and discretization of stochastic logistic equations, Int. J. Numer. Anal. Model., 4, 178-197 (2007) · Zbl 1128.65008
[18] Matus, P.; Irkhin, U.; Lapinska-Chrzczonowicz, M., Exact difference schemes for time-dependent problems, Comput. Methods Appl. Math., 5, 422-448 (2005) · Zbl 1082.65076
[19] Timan, A. F., Theory of Approximation of Functions of a Real Variable (1963), Dover Publications · Zbl 0117.29001
[20] Williams, D., Probability with Martingales (1991), Cambridge University Press · Zbl 0722.60001
[21] Robinson, J. C., Stability of random attractors under perturbation and approximation, J. Differential Equations, 186, 652-669 (2002) · Zbl 1020.37033
[22] Hernandez, D. B.; Spigler, R., A-stability of Runge-Kutta methods for systems with additive noise, BIT, 32, 620-633 (1992) · Zbl 0755.65084
[23] Saito, Y., Stability analysis of numerical methods for stochastic systems with additive noise
[24] Arnold, L., Random Dynamical Systems (1998), Springer
[25] Caraballo, T.; Kloeden, P., The pathwise numerical approximation of stationary solutions of semilinear stochastic evolution equations, Appl. Math. Optim., 54, 401-415 (2006) · Zbl 1113.60064
[26] Baker, C. T.H.; Buckwar, E., Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS J. Comput. Math., 3, 315-335 (2010) · Zbl 0974.65008
[27] Pasquali, S., The stochastic logistic equation: stationary solutions and their stability, Rend. Semin. Mat. Univ. Padova, 106, 165-183 (2001) · Zbl 1165.60328
[28] Sun, X.; Wang, Y., Stability analysis of a stochastic logistic model with nonlinear diffusion term, Appl. Math. Model., 32, 2067-2075 (2008) · Zbl 1145.34348
[29] Lowen, H.; Szamel, G., Long-time self-diffusion coefficient in colloidal suspensions: theory versus simulation, J. Phys.: Condens. Matter, 5, 2295-2306 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.