×

Sharing a verifiable secret image using two shadows. (English) Zbl 1175.68507

Summary: We propose a novel \((2,2)\) Verifiable Secret Sharing (VSS) scheme, which not only protects a secret image but also allows users to verify the restored secret image in the revealing and verifying phase, for all binary, grayscale and color images. Error diffusion and image clustering techniques are adopted to achieve our objective. Experimental results and discussions show that the proposed scheme, with its smaller shadow size and lower computational complexity, obviously outperforms previous VSS schemes designed either with or without the cheating prevention mechanism. Moreover, the use of a halftone logo gives an efficient solution to verifying whether the restored secret image is correct by using a halftone logo.

MSC:

68U10 Computing methodologies for image processing
68P25 Data encryption (aspects in computer science)
94A62 Authentication, digital signatures and secret sharing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Adhikari, S. Sikdar, A New (2, \(n)\)-Visual Threshold Scheme for Color Images, in: INDOCRYPT 2003, Lecture Notes in Computer Science, vol. 2904, 2003, pp. 148-161.; A. Adhikari, S. Sikdar, A New (2, \(n)\)-Visual Threshold Scheme for Color Images, in: INDOCRYPT 2003, Lecture Notes in Computer Science, vol. 2904, 2003, pp. 148-161. · Zbl 1123.94373
[2] G.R. Blakley, Safeguarding cryptographic keys, in: Proceedings of the National Computer Conference, American Federation of Information Processing Societies, June 1979, pp. 313-317.; G.R. Blakley, Safeguarding cryptographic keys, in: Proceedings of the National Computer Conference, American Federation of Information Processing Societies, June 1979, pp. 313-317.
[3] Blude, C.; De Santis, A.; Naor, M., Visual cryptography for grey level images, Information Processing Letters, 27, 255-259 (2000) · Zbl 1339.94037
[4] Canny, J., A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 6, 679-698 (1986)
[5] Chan, Y. H., A modified multiscale error diffusion technique for digital halftoning, IEEE Signal Processing Letters, 2, 11, 277-280 (1998)
[6] Chan, Y. H.; Cheung, S. M., Feature preserving multiscale error diffusion for digital halftoning, Journal of Electronic Imaging, 13, 3, 639-645 (2004)
[7] C. Chang, C.C. Lin, T.H.N. Le, B.H. Le, A new probabilistic visual secret sharing scheme for color images, in: International Symposiums on Electronic Commerce and Security, 2008, pp. 1305-1308.; C. Chang, C.C. Lin, T.H.N. Le, B.H. Le, A new probabilistic visual secret sharing scheme for color images, in: International Symposiums on Electronic Commerce and Security, 2008, pp. 1305-1308.
[8] Chang, C. C.; Lin, C. C.; Le, T. H.N.; Le, B. H., A probabilistic visual secret sharing scheme for grayscale images with voting strategy, Intelligent Information Hiding and Multimedia Signal Processing, 184-188 (2008)
[9] Chang, C. C.; Hsieh, Y. P.; Lin, C. H., Sharing secrets in stego images with authentication, Pattern Recognition, 41, 10, 3130-3137 (2008) · Zbl 1147.68503
[10] Chen, Y. F.; Chan, Y. K.; Huang, C. C.; Tsai, M. H.; Chu, Y. P., A multiple-level visual secret-sharing scheme without image size expansion, Information Sciences, 177, 21, 4696-4710 (2007) · Zbl 1142.94368
[11] Chung, K. L.; Wu, S. T., Inverse halftoning algorithm using edge-based lookup table approach, IEEE Transactions on Image Processing, 14, 10, 1583-1589 (2005)
[12] Cimato, S.; De Prisco, R.; De Santis, A., Probabilistic visual cryptography schemes, The Computer Journal, 49, 1, 97-107 (2006)
[13] Floyd, R. W.; Steinberg, L., An adaptive algorithm for spatial grayscale, Processing Society for Information Display, 17, 2, 75-77 (1976)
[14] Haykin, S., Adaptive Filter Theory (2002), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[15] Horng, G.; Chen, T.; Tasi, D., Cheating in visual cryptography, Designs, Codes and Cryptography, 38, 219-236 (2006) · Zbl 1146.94012
[16] Ito, R.; Kuwakado, H.; Tanaka, H., Image size invariant visual cryptography, IEICE Transactions on Fundamentals E, 82-A, 10, 2172-2177 (1999)
[17] Kwoka, H. S.; Tang, W. K.S., A fast image encryption system based on chaotic maps with finite precision representation, Chaos, Solitons and Fractals, 32, 4, 1518-1529 (2007) · Zbl 1127.94004
[18] Lee, J. H.; Kwon, Y. M.; Kim, H. G., A color halftoning algorithm for low-bit flat panel displays, IEEE International Conference on Image Processing, 2, 346-349 (1995)
[19] Mese, M.; Vaidyanathan, P. P., Optimized halftoning using dot diffusion and methods for inverse halftoning, IEEE Transactions on Image Processing, 9, 4, 691-709 (2000)
[20] Mese, M.; Vaidyanathan, P. P., Look up table (LUT) method for inverse halftoning, IEEE Transactions on Image Processing, 10, 10, 1566-1578 (2001)
[21] M. Naor, A. Shamir, Visual Cryptography, Advances in Cryptology—Eurocrypt’94, in: Lecture Notes in Computer Science, vol. 950, 1995, pp. 1-12.; M. Naor, A. Shamir, Visual Cryptography, Advances in Cryptology—Eurocrypt’94, in: Lecture Notes in Computer Science, vol. 950, 1995, pp. 1-12.
[22] Neelamani, R.; Nowak, R.; Baraniuk, R., Wavelet-based inverse halftoning via deconvolution, IEEE Transactions on Image Processing, 13, 973-976 (2002)
[23] R.D. Prisco, A.D. Santis, Cheating immune (2, \(n)\)-threshold visual secret sharing, in: Proceedings of Security and Cryptography for Networks, vol. 4116, 2006, pp. 216-228.; R.D. Prisco, A.D. Santis, Cheating immune (2, \(n)\)-threshold visual secret sharing, in: Proceedings of Security and Cryptography for Networks, vol. 4116, 2006, pp. 216-228. · Zbl 1152.94449
[24] Shamir, A., How to share a secret, Communications of ACM, 22, 11, 612-613 (1979) · Zbl 0414.94021
[25] Shiozaki, A., Digital half-toning by error diffusion with perturbation, Electronics Letters, 32, 18, 1655-1656 (1996)
[26] Shyu, S. J., Efficient visual secret sharing scheme for color images, Pattern Recognition, 39, 5, 866-880 (2006) · Zbl 1105.68454
[27] Thien, C.; Lin, J. C., Secret image sharing, Computers and Graphics, 26, 1, 765-770 (2002)
[28] Tsai, S.; Chen, T. H.; Horng, G., A cheating prevention scheme for binary visual cryptography with homogeneous secret images, Pattern Recognition, 40, 8, 2356-2366 (2007) · Zbl 1115.68080
[29] Voyatzis, G.; Pitas, I., Applications of toral automorphism in image watermarking, IEEE Transactions on Image Processing, 2, 237-240 (1996)
[30] Wang, D.; Zhang, L.; Ma, N.; Li, X., Two secret sharing schemes based on Boolean operations, Pattern Recognition, 40, 2776-2785 (2007) · Zbl 1132.68377
[31] Yang, C. N., New visual secret sharing schemes using probabilistic method, Pattern Recognition Letters, 25, 4, 481-494 (2004)
[32] Yang, C. N.; Chen, T. S.; Yu, K. H.; Wang, C. C., Improvements of image sharing with steganography and authentication, Journal of Systems and Software, 73, 3, 405-414 (2004)
[33] Zhao, R.; Zhao, J. J.; Dai, F.; Zhao, F. Q., A new image secret sharing scheme to identify cheaters, Computer Standards and Interfaces, 31, 1, 252-257 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.