×

Imaginary multiplicative chaos: moments, regularity and connections to the Ising model. (English) Zbl 1472.60064

Summary: In this article we study imaginary Gaussian multiplicative chaos – namely a family of random generalized functions which can formally be written as \(e^{iX(x)}\), where \(X\) is a log-correlated real-valued Gaussian field on \(\mathbb{R}^d\), that is, it has a logarithmic singularity on the diagonal of its covariance. We study basic analytic properties of these random generalized functions, such as what spaces of distributions these objects live in, along with their basic stochastic properties, such as moment and tail estimates.
After this, we discuss connections between imaginary multiplicative chaos and the critical planar Ising model, namely that the scaling limit of the spin field of the critical planar XOR-Ising model can be expressed in terms of the cosine of the Gaussian free field, that is, the real part of an imaginary multiplicative chaos distribution. Moreover, if one adds a magnetic perturbation to the XOR-Ising model, then the scaling limit of the spin field can be expressed in terms of the cosine of the sine-Gordon field, which can also be viewed as the real part of an imaginary multiplicative chaos distribution.
The first sections of the article have been written in the style of a review, and we hope that the text will also serve as an introduction to imaginary chaos for an uninitiated reader.

MSC:

60G15 Gaussian processes
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York. · Zbl 1149.60003
[2] Arguin, L.-P., Belius, D. and Bourgade, P. (2017). Maximum of the characteristic polynomial of random unitary matrices. Comm. Math. Phys. 349 703-751. · Zbl 1371.15036 · doi:10.1007/s00220-016-2740-6
[3] Arguin, L.-P., Belius, D., Bourgade, P., Radziwill, M. and Soundararajan, K. (2019). Maximum of the Riemann zeta function on a short interval of the critical line. Comm. Pure Appl. Math. 72 500-535. · Zbl 1443.11161 · doi:10.1002/cpa.21791
[4] Aronszajn, N. and Smith, K. T. (1961). Theory of Bessel potentials. I. Ann. Inst. Fourier (Grenoble) 11 385-475. · Zbl 0102.32401 · doi:10.5802/aif.116
[5] Astala, K., Jones, P., Kupiainen, A. and Saksman, E. (2011). Random conformal weldings. Acta Math. 207 203-254. · Zbl 1253.30032 · doi:10.1007/s11511-012-0069-3
[6] Barral, J., Jin, X. and Mandelbrot, B. (2010). Uniform convergence for complex \([0,1]\)-martingales. Ann. Appl. Probab. 20 1205-1218. · Zbl 1208.60035 · doi:10.1214/09-AAP664
[7] Barral, J. and Mandelbrot, B. (2009). Fractional multiplicative processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 1116-1129. · Zbl 1201.60035 · doi:10.1214/08-AIHP198
[8] Baxter, R. J. (1982). Exactly Solved Models in Statistical Mechanics. Academic Press, London. · Zbl 0538.60093
[9] Berestycki, N. (2017). An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22 Art. ID 27. · Zbl 1365.60035 · doi:10.1214/17-ECP58
[10] Berestycki, N., Webb, C. and Wong, M. D. (2018). Random Hermitian matrices and Gaussian multiplicative chaos. Probab. Theory Related Fields 172 103-189. · Zbl 1429.60009 · doi:10.1007/s00440-017-0806-9
[11] Bergeron, F., Labelle, G. and Leroux, P. (1998). Combinatorial Species and Tree-Like Structures. Encyclopedia of Mathematics and Its Applications 67. Cambridge Univ. Press, Cambridge. · Zbl 0888.05001
[12] Borodin, A. and Ferrari, P. L. (2014). Anisotropic growth of random surfaces in \(2+1\) dimensions. Comm. Math. Phys. 325 603-684. · Zbl 1303.82015 · doi:10.1007/s00220-013-1823-x
[13] Boutillier, C. and de Tilière, B. (2014). Height representation of XOR-Ising loops via bipartite dimers. Electron. J. Probab. 19 Art. ID 80. · Zbl 1302.82014 · doi:10.1214/EJP.v19-2449
[14] Camia, F., Garban, C. and Newman, C. M. (2015). Planar Ising magnetization field I. Uniqueness of the critical scaling limit. Ann. Probab. 43 528-571. · Zbl 1332.82012 · doi:10.1214/13-AOP881
[15] Camia, F., Garban, C. and Newman, C. M. (2016). Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Ann. Inst. Henri Poincaré Probab. Stat. 52 146-161. · Zbl 1338.82009 · doi:10.1214/14-AIHP643
[16] Carpentier, D. and Le Doussal, P. (2001). Glass transition of a particle in a random potential, front selection in nonlinear RG and entropic phenomena in Liouville and Sinh-Gordon models. Phys. Rev. E 63 026110.
[17] Chelkak, D., Hongler, C. and Izyurov, K. (2015). Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2) 181 1087-1138. · Zbl 1318.82006 · doi:10.4007/annals.2015.181.3.5
[18] Chhaibi, R., Madaule, T. and Najnudel, J. (2018). On the maximum of the \(\text{C}\beta\text{E}\) field. Duke Math. J. 167 2243-2345. · Zbl 1457.60008 · doi:10.1215/00127094-2018-0016
[19] Claeys, T. and Krasovsky, I. (2015). Toeplitz determinants with merging singularities. Duke Math. J. 164 2897-2987. · Zbl 1333.15018 · doi:10.1215/00127094-3164897
[20] Coleman, S. (1975). Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11 2088-2097.
[21] David, F., Kupiainen, A., Rhodes, R. and Vargas, V. (2016). Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys. 342 869-907. · Zbl 1336.83042 · doi:10.1007/s00220-016-2572-4
[22] Deift, P., Its, A. and Krasovsky, I. (2011). Asymptotics of Toeplitz, Hankel, and Toeplitz \(+\) Hankel determinants with Fisher-Hartwig singularities. Ann. of Math. (2) 174 1243-1299. · Zbl 1232.15006 · doi:10.4007/annals.2011.174.2.12
[23] Deift, P., Its, A. and Krasovsky, I. (2014). On the asymptotics of a Toeplitz determinant with singularities. In Random Matrix Theory, Interacting Particle Systems, and Integrable Systems. Math. Sci. Res. Inst. Publ. 65 93-146. Cambridge Univ. Press, New York. · Zbl 1326.35218
[24] Di Francesco, P., Mathieu, P. and Sénéchal, D. (1997). Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York. · Zbl 0869.53052
[25] Dimock, J. and Hurd, T. R. (2000). Sine-Gordon revisited. Ann. Henri Poincaré 1 499-541. · Zbl 1002.81035 · doi:10.1007/s000230050005
[26] Ding, J., Roy, R. and Zeitouni, O. (2017). Convergence of the centered maximum of log-correlated Gaussian fields. Ann. Probab. 45 3886-3928. · Zbl 1412.60058 · doi:10.1214/16-AOP1152
[27] Dubédat, J. Exact bosonization of the Ising model. Preprint. Available at arXiv:1112.4399. · Zbl 1204.60079
[28] Dubédat, J. (2009). SLE and the free field: Partition functions and couplings. J. Amer. Math. Soc. 22 995-1054. · Zbl 1204.60079
[29] Duplantier, B. and Sheffield, S. (2011). Liouville quantum gravity and KPZ. Invent. Math. 185 333-393. · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[30] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge.
[31] Dyson, F. J. and Lenard, A. (1967). Stability of matter. I. J. Math. Phys. 8 423-434. · Zbl 0948.81665 · doi:10.1063/1.1705209
[32] Fefferman, C. and de la Llave, R. (1986). Relativistic stability of matter. I. Rev. Mat. Iberoam. 2 119-213. · Zbl 0602.58015
[33] Fröhlich, J. (1976). Classical and quantum statistical mechanics in one and two dimensions: Two-component Yukawa- and Coulomb systems. Comm. Math. Phys. 47 233-268. · Zbl 1092.82505
[34] Furlan, M. and Mourrat, J.-C. (2017). A tightness criterion for random fields, with application to the Ising model. Electron. J. Probab. 22 Art. ID 97. · Zbl 1378.60065 · doi:10.1214/17-EJP121
[35] Fyodorov, Y. V., Hiary, G. A. and Keating, J. P. (2012). Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function. Phys. Rev. Lett. 108 Art. ID 170601.
[36] Fyodorov, Y. V. and Keating, J. P. (2014). Freezing transitions and extreme values: Random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 Art. ID 20120503. · Zbl 1330.82028
[37] Fyodorov, Y. V., Khoruzhenko, B. A. and Simm, N. J. (2016). Fractional Brownian motion with Hurst index \(H=0\) and the Gaussian unitary ensemble. Ann. Probab. 44 2980-3031. · Zbl 1393.60037 · doi:10.1214/15-AOP1039
[38] Garnett, J. B. and Marshall, D. E. (2008). Harmonic Measure. New Mathematical Monographs 2. Cambridge Univ. Press, Cambridge.
[39] Glimm, J. and Jaffe, A. (1981). Quantum Physics: A Functional Integral Point of View. Springer, New York. · Zbl 0461.46051
[40] Grafakos, L. (2014). Modern Fourier Analysis, 3rd ed. Graduate Texts in Mathematics 250. Springer, New York. · Zbl 1304.42002
[41] Gunson, J. and Panta, L. S. (1977). Two-dimensional neutral Coulomb gas. Comm. Math. Phys. 52 295-304.
[42] Hairer, M. and Shen, H. (2016). The dynamical sine-Gordon model. Comm. Math. Phys. 341 933-989. · Zbl 1336.60120 · doi:10.1007/s00220-015-2525-3
[43] Hughes, C. P., Keating, J. P. and O’Connell, N. (2001). On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys. 220 429-451. · Zbl 0987.60039 · doi:10.1007/s002200100453
[44] Hytönen, T., van Neerven, J., Veraar, M. and Weis, L. (2016). Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 63. Springer, Cham. · Zbl 1366.46001
[45] Itzykson, C. and Zuber, J. B. (1977). Quantum field theory and the two-dimensional Ising model. Phys. Rev. D 15 2875-2884.
[46] Ivanov, V. and Olshanski, G. (2002). Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In Symmetric Functions 2001: Surveys of Developments and Perspectives. NATO Sci. Ser. II Math. Phys. Chem. 74 93-151. Kluwer Academic, Dordrecht. · Zbl 1016.05073
[47] Junnila, J. and Saksman, E. (2017). Uniqueness of critical Gaussian chaos. Electron. J. Probab. 22 Art. ID 11. · Zbl 1357.60040 · doi:10.1214/17-EJP28
[48] Junnila, J., Saksman, E. and Webb, C. (2019). Decompositions of log-correlated fields with applications. Ann. Appl. Probab. 29 3786-3820. · Zbl 1444.60026 · doi:10.1214/19-AAP1492
[49] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105-150. · Zbl 0596.60041
[50] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. · Zbl 0996.60001
[51] Kenyon, R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29 1128-1137. · Zbl 1034.82021 · doi:10.1214/aop/1015345599
[52] Kupiainen, A., Rhodes, R. and Vargas, V. (2020). Integrability of Liouville theory: Proof of the DOZZ formula. Ann. of Math. (2) 191 81-166. · Zbl 1432.81055 · doi:10.4007/annals.2020.191.1.2
[53] Lacoin, H., Rhodes, R. and Vargas, V. (2015). Complex Gaussian multiplicative chaos. Comm. Math. Phys. 337 569-632. · Zbl 1322.60065 · doi:10.1007/s00220-015-2362-4
[54] Lambert, G., Ostrovsky, D. and Simm, N. (2018). Subcritical multiplicative chaos for regularized counting statistics from random matrix theory. Comm. Math. Phys. 360 1-54. · Zbl 1434.60031 · doi:10.1007/s00220-018-3130-z
[55] Lambert, G. and Paquette, E. (2019). The law of large numbers for the maximum of almost Gaussian log-correlated fields coming from random matrices. Probab. Theory Related Fields 173 157-209. · Zbl 1447.60025 · doi:10.1007/s00440-018-0832-2
[56] Lawler, G., Sun, X. and Wu, W. (2019). Four-dimensional loop-erased random walk. Ann. Probab. 47 3866-3910. · Zbl 1458.60054 · doi:10.1214/19-AOP1349
[57] Leblé, T., Serfaty, S. and Zeitouni, O. (2017). Large deviations for the two-dimensional two-component plasma. Comm. Math. Phys. 350 301-360. · Zbl 1371.82109 · doi:10.1007/s00220-016-2735-3
[58] Lukyanov, S. and Zamolodchikov, A. (1997). Exact expectation values of local fields in the quantum sine-Gordon model. Nuclear Phys. B 493 571-587. · Zbl 0909.58064 · doi:10.1016/S0550-3213(97)00123-5
[59] Madaule, T. (2015). Maximum of a log-correlated Gaussian field. Ann. Inst. Henri Poincaré Probab. Stat. 51 1369-1431. · Zbl 1329.60138 · doi:10.1214/14-AIHP633
[60] McCoy, B. M. and Wu, T. T. (1973). The Two-Dimensional Ising Model. Harvard Univ. Press, Cambridge, MA. · Zbl 1094.82500
[61] Meyer, Y. (1990). Ondelettes et Opérateurs. I: Ondelettes [Wavelets]. Actualités Mathématiques [Current Mathematical Topics]. Hermann, Paris. · Zbl 0694.41037
[62] Miller, J. and Sheffield, S. (2016). Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields 164 553-705. · Zbl 1336.60162 · doi:10.1007/s00440-016-0698-0
[63] Miller, J. and Sheffield, S. (2020). Liouville quantum gravity and the Brownian map I: The \(\operatorname{QLE}(8/3,0)\) metric. Invent. Math. 219 75-152. · Zbl 1437.83042 · doi:10.1007/s00222-019-00905-1
[64] Najnudel, J. (2018). On the extreme values of the Riemann zeta function on random intervals of the critical line. Probab. Theory Related Fields 172 387-452. · Zbl 1442.11125 · doi:10.1007/s00440-017-0812-y
[65] Newman, C. M. and Wu, W. (2019). Lee-Yang property and Gaussian multiplicative chaos. Comm. Math. Phys. 369 153-170. · Zbl 1417.82013 · doi:10.1007/s00220-019-03453-0
[66] Nicolò, F., Renn, J. and Steinmann, A. (1986). On the massive sine-Gordon equation in all regions of collapse. Comm. Math. Phys. 105 291-326. · Zbl 0636.35072 · doi:10.1007/BF01211104
[67] Onsager, L. (1939). Electrostatic interaction between molecules. J. Phys. Chem. 43 189-196.
[68] Paquette, E. and Zeitouni, O. (2018). The maximum of the CUE field. Int. Math. Res. Not. IMRN 2018 5028-5119. · Zbl 1407.60010 · doi:10.1093/imrn/rnx033
[69] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315-392. · Zbl 1316.60073 · doi:10.1214/13-PS218
[70] Rider, B. and Virág, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN 2007 Art. ID rnm006. · Zbl 1130.60030
[71] Saksman, E. and Webb, C. The Riemann zeta function and Gaussian multiplicative chaos: Statistics on the critical line. Preprint. Available at arXiv:1609.00027. · Zbl 1443.60041
[72] Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521-541. · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[73] Sheffield, S. (2016). Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44 3474-3545. · Zbl 1388.60144 · doi:10.1214/15-AOP1055
[74] Simon, B. (1979). Functional Integration and Quantum Physics. Pure and Applied Mathematics 86. Academic Press, New York. · Zbl 0434.28013
[75] Solovej, J. P. (1989). Some simple counterexamples to the Onsager lemma on metric spaces. Rep. Math. Phys. 28 335-338. · Zbl 0823.54024 · doi:10.1016/0034-4877(89)90066-9
[76] Triebel, H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library 18. North-Holland, Amsterdam.
[77] Triebel, H. (1983). Theory of Function Spaces. Mathematik und Ihre Anwendungen in Physik und Technik [Mathematics and Its Applications in Physics and Technology] 38. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig. · Zbl 0546.46028
[78] Webb, C. (2015). The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos—The \(L^2\)-phase. Electron. J. Probab. 20 Art. ID 104. · Zbl 1328.15052 · doi:10.1214/EJP.v20-4296
[79] Whittaker, E. T. and Watson, G. N. (1996). A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. · Zbl 0951.30002
[80] Wilson, D. B. XOR-Ising loops and the Gaussian free field. Preprint. Available at arXiv:1102.3782.
[81] Zamolodchikov, A. B. (1989). Integrable field theory from conformal field theory. In Integrable Systems in Quantum Field Theory and Statistical Mechanics. Adv. Stud. Pure Math. 19 641-674. Academic Press, Boston, MA. · Zbl 0703.17014
[82] Zamolodchikov, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.