×

Coupling XFEM and peridynamics for brittle fracture simulation. I: Feasibility and effectiveness. (English) Zbl 1462.74155

Summary: A peridynamics (PD)-extended finite element method (XFEM) coupling strategy for brittle fracture simulation is presented. The proposed methodology combines a small PD patch, restricted near the crack tip area, with the XFEM that captures the crack body geometry outside the domain of the localised PD grid. The feasibility and effectiveness of the proposed method on a Mode I crack opening problem is examined. The study focuses on comparisons of the \(J\) integral values between the new coupling strategy, full PD grids and the commercial software Abaqus. It is demonstrated that the proposed approach outperforms full PD grids in terms of computational resources required to obtain a certain degree of accuracy. This finding promises significant computational savings when crack propagation problems are considered, as the efficiency of FEM and XFEM is combined with the inherent ability of PD to simulate fracture.
For Part II, see [the authors, Comput. Mech. 66, No. 3, 683-705 (2020; Zbl 1466.74043)].

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture
74A70 Peridynamics

Citations:

Zbl 1466.74043

Software:

PERMIX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, TL; Anderson, T., Fracture mechanics: fundamentals and applications (2005), Boca Raton: CRC Press, Boca Raton · Zbl 1083.74001
[2] Agwai, A.; Guven, I.; Madenci, E., Predicting crack propagation with peridynamics: a comparative study, Int J Fract, 171, 1, 65-78 (2011) · Zbl 1283.74052
[3] Klein, PA; Foulk, JW; Chen, EP; Wimmer, SA; Gao, HJ, Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods, Theor Appl Fract Mech, 37, 1-3, 99-166 (2001)
[4] Khoei, AR, Extended finite element method: theory and applications (2014), Berlin: Wiley, Berlin
[5] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 4, 043001 (2009)
[6] Silling, SA, Reformulation of elasticity theory for discontinuities and long-range forces, J Mech Phys Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[7] De Meo, D.; Zhu, N.; Oterkus, E., Peridynamic modeling of granular fracture in polycrystalline materials, J Eng Mater Technol, 138, 041008 (2016)
[8] Askari, E.; Bobaru, F.; Lehoucq, RB; Parks, ML; Silling, SA; Weckner, O., Peridynamics for multiscale materials modeling, J Phys Conf Ser, 125, 012078 (2008)
[9] Silling, SA; Bobaru, F., Peridynamic modeling of membranes and fibers, Int J Nonlinear Mech, 40, 2, 395-409 (2005) · Zbl 1349.74231
[10] Ghajari, M.; Iannucci, L.; Curtis, P., A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Comput Methods Appl Mech Eng, 276, 431-452 (2014) · Zbl 1423.74882
[11] Emmrich E, Weckner O (2006) The peridynamic equation of motion in non-local elasticity theory. Presented at the III European conference on computational mechanics-solids, structures and coupled problems in engineering
[12] Bobaru F, Foster JT, Geubelle PH, Geubelle PH, Silling SA, and (first) (2016) Handbook of peridynamic modeling · Zbl 1351.74001
[13] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput Methods Appl Mech Eng, 199, 37-40, 2437-2455 (2010) · Zbl 1231.74493
[14] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int J Numer Methods Eng, 61, 13, 2316-2343 (2004) · Zbl 1075.74703
[15] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput Methods Appl Mech Eng, 196, 29-30, 2777-2799 (2007) · Zbl 1128.74051
[16] Han, F.; Lubineau, G.; Azdoud, Y., Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure, J Mech Phys Solids, 94, 453-472 (2016)
[17] Bobaru, F.; Yang, M.; Alves, LF; Silling, SA; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, Int J Numer Methods Eng, 77, 6, 852-877 (2009) · Zbl 1156.74399
[18] Bobaru, F.; Ha, YD, Adaptive refinement and multiscale modeling in 2D peridynamics, J Multiscale Comput Eng, 9, 635-659 (2011)
[19] Dipasquale, D.; Zaccariotto, M.; Galvanetto, U., Crack propagation with adaptive grid refinement in 2D peridynamics, Int J Fract, 190, 1-2, 1-22 (2014)
[20] Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T., Dual-horizon peridynamics, Int J Numer Methods Eng, 108, 12, 1451-1476 (2016)
[21] Liu, W.; Hong, JW, Discretized peridynamics for linear elastic solids, Comput Mech, 50, 5, 579-590 (2012) · Zbl 1312.74030
[22] Galvanetto, U.; Mudric, T.; Shojaei, A.; Zaccariotto, M., An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems, Mech Res Commun, 76, 41-47 (2016)
[23] Zaccariotto, M.; Mudric, T.; Tomasi, D.; Shojaei, A.; Galvanetto, U., Coupling of FEM meshes with peridynamic grids, Comput Methods Appl Mech Eng, 330, 471-497 (2018) · Zbl 1439.65103
[24] Madenci, E.; Oterkus, E., Peridynamic theory and its applications (2014), Berlin: Springer, Berlin · Zbl 1295.74001
[25] Seleson, P.; Beneddine, S.; Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Comput Mater Sci, 66, 34-49 (2013)
[26] Kilic, B.; Madenci, E., Coupling of peridynamic theory and the finite element method, J Mech Mater Struct, 5, 5, 707-733 (2010)
[27] Sun, W.; Fish, J., Superposition-based coupling of peridynamics and finite element method, Comput Mech, 64, 1, 231-248 (2019) · Zbl 1469.74107
[28] Ni, T.; Zaccariotto, M.; Zhu, Q-Z; Galvanetto, U., Static solution of crack propagation problems in peridynamics, Comput Methods Appl Mech Eng, 346, 126-151 (2019) · Zbl 1440.74034
[29] Fish, J., Multiscale methods: bridging the scales in science and engineering (2010), Oxford: Oxford University Press, Oxford · Zbl 1205.65009
[30] Budarapu, PR; Gracie, R.; Yang, S-W; Zhuang, X.; Rabczuk, T., Efficient coarse graining in multiscale modeling of fracture, Theor Appl Fract Mech, 69, 126-143 (2014)
[31] Talebi, H.; Silani, M.; Bordas, SP; Kerfriden, P.; Rabczuk, T., A computational library for multiscale modeling of material failure, Comput Mech, 53, 5, 1047-1071 (2014)
[32] Dhia, HB; Rateau, G., The Arlequin method as a flexible engineering design tool, Int J Numer Methods Eng, 62, 11, 1442-1462 (2005) · Zbl 1084.74049
[33] Budarapu, PR; Gracie, R.; Bordas, SP; Rabczuk, T., An adaptive multiscale method for quasi-static crack growth, Comput Mech, 53, 6, 1129-1148 (2014)
[34] Talebi, H.; Silani, M.; Rabczuk, T., Concurrent multiscale modeling of three dimensional crack and dislocation propagation, Adv Eng Softw, 80, 82-92 (2015)
[35] Dorduncu M, Barut A, Madenci E, Phan ND (2017) Peridynamic augmented XFEM. Presented at the 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 0656
[36] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput Methods Appl Mech Eng, 304, 408-451 (2016) · Zbl 1425.74043
[37] Giannakeas, IN; Papathanasiou, TK; Bahai, H., Wave reflection and cut-off frequencies in coupled FE-peridynamic grids, Int J Numer Methods Eng, 120, 29-55 (2019)
[38] Silling, SA; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput Struct, 83, 17, 1526-1535 (2005)
[39] Silling, SA; Lehoucq, RB, Peridynamic theory of solid mechanics, Adv Appl Mech, 44, 73-168 (2010)
[40] Ha, YD; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int J Fract, 162, 1-2, 229-244 (2010) · Zbl 1425.74416
[41] Bobaru, F.; Foster, JT; Geubelle, PH; Silling, SA, Handbook of peridynamic modeling (2017), Boca Raton: CRC Press, Taylor & Francis Group, Boca Raton
[42] Le, QV; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput Mech, 61, 1-20 (2017)
[43] Ha, YD; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng Fract Mech, 78, 6, 1156-1168 (2011)
[44] Macek, RW; Silling, SA, Peridynamics via finite element analysis, Finite Elem Anal Des, 43, 15, 1169-1178 (2007)
[45] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Methods Eng, 45, 5, 601-620 (1999) · Zbl 0943.74061
[46] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 1, 131-150 (1999) · Zbl 0955.74066
[47] Zhuang, Z.; Liu, Z.; Cheng, B.; Liao, J., Extended finite element method: Tsinghua University Press computational mechanics series (2014), Berlin: Academic Press, Berlin
[48] Belytschko, T.; Parimi, C.; Moës, N.; Sukumar, N.; Usui, S., Structured extended finite element methods for solids defined by implicit surfaces, Int J Numer Methods Eng, 56, 4, 609-635 (2003) · Zbl 1038.74041
[49] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int J Numer Methods Eng, 50, 4, 993-1013 (2001) · Zbl 0981.74062
[50] Guidault, P.; Belytschko, T., Bridging domain methods for coupled atomistic-continuum models with L2 or H1 couplings, Int J Numer Methods Eng, 77, 11, 1566-1592 (2009) · Zbl 1158.74309
[51] Bauman, PT; Dhia, HB; Elkhodja, N.; Oden, JT; Prudhomme, S., On the application of the Arlequin method to the coupling of particle and continuum models, Comput Mech, 42, 4, 511-530 (2008) · Zbl 1252.74055
[52] Liu, W.; Hong, J-W, A coupling approach of discretized peridynamics with finite element method, Comput Methods Appl Mech Eng, 245, 163-175 (2012) · Zbl 1354.74284
[53] Gerstle, W.; Sau, N.; Silling, S., Peridynamic modeling of concrete structures, Nucl Eng Des, 237, 12, 1250-1258 (2007)
[54] Zaccariotto, M.; Tomasi, D.; Galvanetto, U., An enhanced coupling of PD grids to FE meshes, Mech Res Commun, 84, 125-135 (2017)
[55] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor Appl Fract Mech, 53, 3, 194-204 (2010)
[56] Le, Q.; Chan, W.; Schwartz, J., A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, Int J Numer Methods Eng, 98, 8, 547-561 (2014) · Zbl 1352.74040
[57] Zaccariotto, M.; Luongo, F.; Galvanetto, U., Examples of applications of the peridynamic theory to the solution of static equilibrium problems, Aeronaut J, 119, 1216, 677-700 (2015)
[58] Rabczuk, T.; Ren, H.; Zhuang, X., A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem, Comput Mater Continua, 59, 2019, Ni. 1 (2019)
[59] Littlewood, DJ, Roadmap for peridynamic software implementation (2015), NM Livermore CA: SAND Rep. Sandia Natl. Lab. Albuq, NM Livermore CA
[60] Hu, W.; Ha, YD; Bobaru, F.; Silling, SA, The formulation and computation of the nonlocal J-integral in bond-based peridynamics, Int J Fract, 176, 2, 195-206 (2012)
[61] Littlewood DJ (2015) Roadmap for peridynamic software implementation. Technical Report SAND Report 2015-9013, Sandia National Laboratories Livermore, CA; Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
[62] Béchet, É.; Minnebo, H.; Moës, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int J Numer Methods Eng, 64, 8, 1033-1056 (2005) · Zbl 1122.74499
[63] Bobaru, F.; Hu, W., The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, Int J Fract, 176, 2, 215-222 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.