×

Homological classification of 4d \(\mathcal{N} = 2\) QFT. Rank-1 revisited. (English) Zbl 1427.81069

Summary: Argyres and co-workers started a program to classify all 4d \(\mathcal{N} = 2\) QFT by classifying Special Geometries with appropriate properties. They completed the program in rank-1. Rank-1 \(\mathcal{N} = 2\) QFT are equivalently classified by the Mordell-Weil groups of certain rational elliptic surfaces. The classification of 4d \(\mathcal{N} = 2\) QFT is also conjectured to be equivalent to the representation theoretic (RT) classification of all 2-Calabi-Yau categories with suitable properties. Since the RT approach smells to be much simpler than the Special-Geometric one, it is worthwhile to check this expectation by reproducing the rank-1 result from the RT side. This is the main purpose of the present paper. Along the route we clarify several issues and learn new details about the rank-1 SCFT. In particular, we relate the rank-1 classification to mirror symmetry for Fano surfaces. In the follow-up paper we apply the RT methods to higher rank 4d \(\mathcal{N} = 2\) SCFT.

MSC:

81T10 Model quantum field theories
81T60 Supersymmetric field theories in quantum mechanics
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

Software:

quivermutation
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P.C. Argyres, M. Crescimanno, A.D. Shapere and J.R. Wittig, Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches, hep-th/0504070 [INSPIRE].
[2] P.C. Argyres and J.R. Wittig, Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches. II., hep-th/0510226 [INSPIRE].
[3] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space ofN \[\mathcal{N} = 2\] SCFTs. Part I: physical constraints on relevant deformations, JHEP02 (2018) 001 [arXiv:1505.04814] [INSPIRE]. · Zbl 1387.81301
[4] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space ofN \[\mathcal{N} = 2\] SCFTs. Part II: construction of special K¨ahler geometries and RG flows, JHEP02 (2018) 002 [arXiv:1601.00011] [INSPIRE]. · Zbl 1387.81300
[5] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape ofN \[\mathcal{N} = 2\] rank 1 SCFTs, JHEP05 (2016) 088 [arXiv:1602.02764] [INSPIRE]. · Zbl 1388.81758 · doi:10.1007/JHEP05(2016)088
[6] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space ofN \[\mathcal{N} = 2\] SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP02 (2018) 003 [arXiv:1609.04404] [INSPIRE]. · Zbl 1387.81302
[7] P.C. Argyres and M. Martone, 4d N =2 theories with disconnected gauge groups, JHEP03 (2017) 145 [arXiv:1611.08602] [INSPIRE]. · Zbl 1377.81149 · doi:10.1007/JHEP03(2017)145
[8] P.C. Argyres, Y. Lü and M. Martone, Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated, JHEP06 (2017) 144 [arXiv:1704.05110] [INSPIRE]. · Zbl 1380.81381 · doi:10.1007/JHEP06(2017)144
[9] P.C. Argyres, C. Long and M. Martone, The Singularity Structure of Scale-Invariant Rank-2 Coulomb Branches, JHEP05 (2018) 086 [arXiv:1801.01122] [INSPIRE]. · Zbl 1391.81184 · doi:10.1007/JHEP05(2018)086
[10] P.C. Argyres and M. Martone, Scaling dimensions of Coulomb branch operators of 4dN \[\mathcal{N} = 2\] superconformal field theories, arXiv:1801.06554 [INSPIRE]. · Zbl 1457.81096
[11] P.C. Argyres and M. Martone, Coulomb branches with complex singularities, JHEP06 (2018) 045 [arXiv:1804.03152] [INSPIRE]. · Zbl 1395.81258 · doi:10.1007/JHEP06(2018)045
[12] M. Caorsi and S. Cecotti, Geometric classification of 4dN \[\mathcal{N} = 2\] SCFTs, JHEP07 (2018) 138 [arXiv:1801.04542] [INSPIRE]. · Zbl 1395.81205 · doi:10.1007/JHEP07(2018)138
[13] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement inN \[\mathcal{N} = 2\] supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[14] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking inN \[\mathcal{N} = 2\] supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [INSPIRE]. · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[15] R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys.B 460 (1996) 299 [hep-th/9510101] [INSPIRE]. · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[16] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
[17] M. Caorsi and S. Cecotti, Special Arithmetic of Flavor, JHEP08 (2018) 057 [arXiv:1803.00531] [INSPIRE]. · Zbl 1396.81169 · doi:10.1007/JHEP08(2018)057
[18] M. Schütt and T. Shioda, Mordell-Weil lattices, to be published (2017). [http://www2.iag.uni-hannover.de/∼schuett/BookMWL17.pdf ]. · Zbl 1433.14002
[19] R. Miranda, The Basic Theory of Elliptic Surfaces, ETS Editrice, Pisa (1989). · Zbl 0744.14026
[20] K. Oguiso and T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Pauli40 (1991) 83. · Zbl 0757.14011
[21] S. Cecotti and M. Del Zotto, On classification of 4dN \[\mathcal{N} = 2\] QFTs. Parts I, II, and III, unpublished notes 2013-2014.
[22] P.S. Aspinwall et al., Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, AMS, Providence RI (2009). · Zbl 1188.14026
[23] S. Cecotti and C. Vafa, Classification of completeN \[\mathcal{N} = 2\] supersymmetric theories in 4 dimensions, Surveys Diff. Geom.18 (2013) [arXiv:1103.5832] [INSPIRE]. · Zbl 1320.81085
[24] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, BPS Quivers and Spectra of CompleteN \[\mathcal{N} = 2\] Quantum Field Theories, Commun. Math. Phys.323 (2013) 1185 [arXiv:1109.4941] [INSPIRE]. · Zbl 1305.81118 · doi:10.1007/s00220-013-1789-8
[25] S. Lang and A. Ńeron, Rational points of abelian varieties over function fields, Amer. J. Math.81 (1959) 95. · Zbl 0099.16103 · doi:10.2307/2372851
[26] S. Lang, Number Theory III. Diophantine Geometry, Encyclopaedia of Mathematical Sciences, vol. 60, Springer (1991). · Zbl 0744.14012
[27] B. Keller and Calabi-Yau, Triangulated categories, in Trends in Representation Theory of Algebras, A. Skowronski ed., European Mathematical Society, Zurich (2008).
[28] D.R. Morrison and D.S. Park, F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds, JHEP10 (2012) 128 [arXiv:1208.2695] [INSPIRE]. · Zbl 1397.81389 · doi:10.1007/JHEP10(2012)128
[29] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP08 (2013) 115 [arXiv:1305.0318] [INSPIRE]. · Zbl 1342.81248 · doi:10.1007/JHEP08(2013)115
[30] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, \[N \mathcal{N} = 2\] quantum field theories and their BPS quivers, Adv. Theor. Math. Phys.18 (2014) 27 [arXiv:1112.3984] [INSPIRE]. · Zbl 1309.81142
[31] Y. Palu, Cluster characters for triangulated 2-Calabi-Yau categories, Annales Inst. Fourier Tome58 (2008) 2221 [math/0703540]. · Zbl 1154.16008
[32] M. Caorsi and S. Cecotti, Homological S-duality in 4dN \[\mathcal{N} = 2\] QFTs, Adv. Theor. Math. Phys.22 (2018) 1593 [arXiv:1612.08065] [INSPIRE]. · Zbl 07430955 · doi:10.4310/ATMP.2018.v22.n7.a1
[33] M. Caorsi and S. Cecotti, Categorical Webs and S-duality in 4dN \[\mathcal{N} = 2\] QFT, Commun. Math. Phys.368 (2019) 885 [arXiv:1707.08981] [INSPIRE]. · Zbl 1420.81025 · doi:10.1007/s00220-019-03461-0
[34] F. Denef, Quantum quivers and Hall/hole halos, JHEP10 (2002) 023 [hep-th/0206072] [INSPIRE]. · doi:10.1088/1126-6708/2002/10/023
[35] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE].
[36] I. Garćıa-Etxebarria and D. Regalado, N = 3 four dimensional field theories, JHEP03 (2016) 083 [arXiv:1512.06434] [INSPIRE]. · Zbl 1388.81817 · doi:10.1007/JHEP03(2016)083
[37] O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP06 (2016) 044 [arXiv:1602.08638] [INSPIRE]. · Zbl 1388.81750 · doi:10.1007/JHEP06(2016)044
[38] S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE]. · Zbl 1355.81120
[39] D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys.17 (2013) 241 [arXiv:1006.0146] [INSPIRE]. · Zbl 1290.81146 · doi:10.4310/ATMP.2013.v17.n2.a1
[40] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-Crossing in Coupled 2d-4d Systems, JHEP12 (2012) 082 [arXiv:1103.2598] [INSPIRE]. · Zbl 1397.81364 · doi:10.1007/JHEP12(2012)082
[41] S. Cecotti and M. Del Zotto, Y systems, Q systems and 4DN \[\mathcal{N} = 2\] supersymmetric QFT, J. Phys.A 47 (2014) 474001 [arXiv:1403.7613] [INSPIRE]. · Zbl 1304.81141
[42] B. Keller, Cluster algebras, quiver representations and triangulated categories, in Triangulated categories, T. Holm, P. Jorgensen and R. Rouquier eds., Lond. Math. Soc. Lect. Note Ser.375 (2010) 76 [arXiv:0807.1960]. · Zbl 1215.16012
[43] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE]. · Zbl 0984.81143
[44] D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N ) Holonomy, Phys. Lett.B 199 (1987) 380 [INSPIRE]. · doi:10.1016/0370-2693(87)90938-5
[45] S. Cecotti and C. Vafa, On classification ofN \[\mathcal{N} = 2\] supersymmetric theories, Commun. Math. Phys.158 (1993) 569 [hep-th/9211097] [INSPIRE]. · Zbl 0787.58049 · doi:10.1007/BF02096804
[46] N. Bourbaki, Groupes et alg̀ebre de Lie, Springer (1990).
[47] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE]. · Zbl 1248.14060
[48] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles and Argyres-Douglas Theories, JHEP01 (2016) 040 [arXiv:1506.00265] [INSPIRE]. · Zbl 1388.81116 · doi:10.1007/JHEP01(2016)040
[49] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[50] I. Reiten, Cluster categories, arXiv:1012.4949 [INSPIRE]. · Zbl 1264.16017
[51] M. Barot, D. Kussin and H. Lenzing, The Grothendieck group of a cluster category, J. Pure Appl. Algebra212 (2008) 33 [math/0606518]. · Zbl 1148.16005
[52] C.M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math., vol. 1099, Springer (1984). · Zbl 0546.16013
[53] S. Cecotti, Categorical Tinkertoys forN \[\mathcal{N} = 2\] Gauge Theories, Int. J. Mod. Phys.A 28 (2013) 1330006 [arXiv:1203.6734] [INSPIRE]. · Zbl 1260.81114 · doi:10.1142/S0217751X13300068
[54] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, arXiv:0805.1035. · Zbl 1239.16011
[55] K. Kodaira, On compact analytic surfaces, in Analytic Functions, Princeton University Press (1960), pp. 121-135. · Zbl 0137.17401
[56] K. Kodaira, On compact analytic surfaces, II, Annals Math.77 (1963) 563. [57] K. Kodaira, On compact analytic surfaces, III, Annals Math.78 (1963) 1. · Zbl 0118.15802
[57] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math.22 (1973) 211. · Zbl 0278.14003 · doi:10.1007/BF01389674
[58] H. Lenzing and J.A. de la Pen˜a, Spectral analysis of finite dimensional algebras and singularities, arXiv:0805.1018. · Zbl 1210.16013
[59] M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields I, Publ. Res. Inst. Math. Sci. Kyoto14 (1978) 223. · Zbl 0383.35066 · doi:10.2977/prims/1195189284
[60] M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields II, Publ. Res. Inst. Math. Sci. Kyoto15 (1979) 201. · Zbl 0433.35058 · doi:10.2977/prims/1195188429
[61] M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields III, Publ. Res. Inst. Math. Sci. Kyoto15 (1979) 577. · Zbl 0436.35076 · doi:10.2977/prims/1195188185
[62] M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields IV, Publ. Res. Inst. Math. Sci. Kyoto15 (1979) 871. · Zbl 0436.35077 · doi:10.2977/prims/1195187881
[63] M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields V, Publ. Res. Inst. Math. Sci. Kyoto16 (1981) 531. · Zbl 0479.35072 · doi:10.2977/prims/1195187216
[64] S. Cecotti and C. Vafa, Ising model andN \[\mathcal{N} = 2\] supersymmetric theories, Commun. Math. Phys.157 (1993) 139 [hep-th/9209085] [INSPIRE]. · Zbl 0787.58008 · doi:10.1007/BF02098023
[65] M.A. Guest, A.R. Its and C.-S. Lin, Isomonodromy aspects of the tt* equations of Cecotti and Vafa I. Stokes data, arXiv:1209.2045 [INSPIRE]. · Zbl 1332.37050
[66] M.A. Guest, A.R. Its and C.-S. Lin, Isomonodromy aspects of the tt* equations of Cecotti and Vafa II. Riemann-Hilbert problem, Commun. Math. Phys.336 (2015) 337 [arXiv:1312.4825] [INSPIRE]. · Zbl 1312.81121
[67] M.A. Guest, A.R. Its and C.-S. Lin, Isomonodromy aspects of the tt* equations of Cecotti and Vafa III. Iwasawa factorization and asymptotics, arXiv:1707.00259 [INSPIRE]. · Zbl 1332.37050
[68] I.V. Dolgachev, Classical Algebraic Geometry. A Modern View, Cambridge University Press (2012). · Zbl 1252.14001
[69] L. Angeleri Hügel, D. Happel and H. Krause eds., Handbook of tilting theory, Cambridge University Press, Lond. Math. Soc. Lect. Note Ser.332 (2007). · Zbl 1106.16300
[70] S.A. Kuleshov and D.O. Orlov, Exceptional sheaves on del Pezzo surfaces, Russian Acad. Sci. Izv. Math.44 (1995) 479. · Zbl 0842.14009
[71] D. Auroux, L. Katzarkov and D. Orlov, Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math.166 (2006) 537. · Zbl 1110.14033 · doi:10.1007/s00222-006-0003-4
[72] A. Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, arXiv:1509.07657. · Zbl 1440.14092
[73] B. Keller, Deformed Calabi-Yau completions, arXiv:0908.3499. · Zbl 1220.18012
[74] S. Cecotti and M. Del Zotto, The BPS spectrum of the 4dN \[\mathcal{N} = 2\] SCFT’s H1, H2, D4, E6, E7, E8 , JHEP06 (2013) 075 [arXiv:1304.0614] [INSPIRE]. · doi:10.1007/JHEP06(2013)075
[75] U. Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z.205 (1990) 1. · Zbl 0722.14021 · doi:10.1007/BF02571223
[76] R. Miranda, Persson’s list of singular fibers for a rational elliptic surface, Math. Z.205 (1990) 191. · Zbl 0722.14022 · doi:10.1007/BF02571235
[77] P.C. Argyres and J.R. Wittig, Infinite coupling duals ofN \[\mathcal{N} = 2\] gauge theories and new rank 1 superconformal field theories, JHEP01 (2008) 074 [arXiv:0712.2028] [INSPIRE]. · doi:10.1088/1126-6708/2008/01/074
[78] K. Bongartz, Algebras and quadratic forms, J. Lond. Math. Soc.28 (1983) 461. · Zbl 0532.16020 · doi:10.1112/jlms/s2-28.3.461
[79] S. Cecotti and M. Del Zotto, Galois covers ofN \[\mathcal{N} = 2\] BPS spectra and quantum monodromy, Adv. Theor. Math. Phys.20 (2016) 1227 [arXiv:1503.07485] [INSPIRE]. · Zbl 1368.81146 · doi:10.4310/ATMP.2016.v20.n6.a1
[80] E. Witt, Spiegelungsgruppen und Aufz¨ahlung halbeinfacher Liescher Ringe, ASUH14 (1941) 289. · JFM 67.0077.03
[81] T. Karayayla, The classification of automorphism groups of rational elliptic surfaces with section, Adv. Math.230 (2012) 1. · Zbl 1237.14044 · doi:10.1016/j.aim.2011.11.007
[82] S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP09 (2015) 035 [arXiv:1507.01799] [INSPIRE]. · Zbl 1388.81034 · doi:10.1007/JHEP09(2015)035
[83] Y. Tachikawa and S. Terashima, Seiberg-Witten Geometries Revisited, JHEP09 (2011) 010 [arXiv:1108.2315] [INSPIRE]. · Zbl 1301.81245 · doi:10.1007/JHEP09(2011)010
[84] B. Keller, On triangulated orbit categories, Documenta Math.10 (2005) 551. · Zbl 1086.18006
[85] M. Barot, D. Kussin and H. Lenzing, The cluster category of a canonical algebra, Trans. Am. Math. Soc.362 (2010) 4313 [arXiv:0801.4540]. · Zbl 1209.18010 · doi:10.1090/S0002-9947-10-04998-6
[86] P. Gabriel, The universal cover of a representation-finite algebra, Proc. Puebla (1980), Representation Theory I [Springer Lect. Notes Math.903 (1981) 68]. · Zbl 0481.16008
[87] K. Bongartz and P. Gabriel. Covering spaces in Representation Theory, Invent. Math.65 (1982) 331. · Zbl 0482.16026 · doi:10.1007/BF01396624
[88] J.A. de la Peña, Group actions on algebras and module categories, Rev. Un. Mat. Argen.48 (2007) 1. · Zbl 1192.16014
[89] S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces. Part I: cluster complexes, math/0608367. · Zbl 1263.13023
[90] B. Keller, Quiver mutation in Java, http://www.institut.math.jussieu.fr/.
[91] C. Amiot, On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. Fr.135 (2007) 435. · Zbl 1158.18005 · doi:10.24033/bsmf.2542
[92] I. Burban, O. Iyama, B. Keller and I. Reiten, Cluster tilting for one-dimensional hypersurface singularities, Adv. Math.217 (2008) 2443. · Zbl 1143.13014 · doi:10.1016/j.aim.2007.10.007
[93] A.B. Buan, Y. Palu and I. Reiten, Algebras of finite representation type arising from maximal rigid objects, J. Algebra446 (2016) 426. · Zbl 1368.18007 · doi:10.1016/j.jalgebra.2015.09.029
[94] B. Keller, The Periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531 [INSPIRE]. · Zbl 1320.17007
[95] J.-I. Miyachi and A. Yekutieli, Derived Picard groups of finite dimensional hereditary algebras, math/9904006. · Zbl 0999.16012
[96] O. Iyama and Y. Yoshino, Mutations in triangulated categories and rigid Cohen- Macaulay modules, Invent. Math.172 (2008) 117 [math/0607736]. · Zbl 1140.18007
[97] D. Gaiotto, \[N \mathcal{N} = 2\] dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE]. · Zbl 1397.81362
[98] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE]. · Zbl 1358.81150
[99] Y. Zhou and B. Zhu, Maximal rigid subcategories in 2-Calabi-Yau triangulated categories, arXiv:1004.5475. · Zbl 1248.16013
[100] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys.B 138 (1978) 1 [INSPIRE].
[101] G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys.B 153 (1979) 141 [INSPIRE].
[102] H. Lenzing, Hereditary categories, in Handbook of tilting theory, L. Angeleri Hügel, D. Happel and H. Krause eds., Cambridge University Press, Lond. Math. Soc. Lect. Note Ser.332 (2007) 105. · Zbl 0869.18006
[103] T. Holm, P. Jorgensen and R. Rouquier eds., Triangulated categories, Cambridge University Press, Lond. Math. Soc. Lect. Note Ser.375 (2010). · Zbl 1195.18001
[104] A.B. Buan, O. Iyama, I. Reiten and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math.145 (2009) 1035. · Zbl 1181.18006 · doi:10.1112/S0010437X09003960
[105] B. Keller and I. Reiten, Cluster tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math.211 (2007) 123 [math/0512471]. · Zbl 1128.18007
[106] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Mathematica14 (2008) 59. · Zbl 1204.16008 · doi:10.1007/s00029-008-0057-9
[107] J. Xu and B. Ouyang, Maximal rigid objects without loops in connected 2-CY categories are cluster-tilting objects, arXiv:1404.1976. · Zbl 1329.18015
[108] C. Amiot and S. Oppermann, The image of the derived category in the cluster category, arXiv:1010.1129. · Zbl 1312.18004
[109] W. Geigle and H. Lenzing, A class of weighted projective curves arising in the representation theory of finite dimensional algebras, in Singularities, Representation of Algebras, and Vector Bundles, G.-M. Greuel and G. Trautmann eds., Lectures Notes in Mathematics, vol. 1273, Springer (1987). · Zbl 0651.14006
[110] H. Lenzing, Hereditary categories, ICTP lectures 2006 [http://webusers.imj-prg.fr/∼bernhard.keller/ictp2006/lecturenotes/lenzing1.pdf ] [http://webusers.imj-prg.fr/∼bernhard.keller/ictp2006/lecturenotes/lenzing2.pdf ].
[111] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra28 (2000) 1685. · Zbl 0965.16008 · doi:10.1080/00927870008826922
[112] H. Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines, Mem. Am. Math. Soc.171 (2004) 808. · Zbl 1055.14016
[113] D. Kussin, Noncommutative curves of genus zero related to finite dimensional algebras, Mem. Am. Math. Soc.201 (2009) 942. · Zbl 1184.14001
[114] X.-W. Chen and H. Krause, Introduction to coherent sheaves on weighted projective lines, arXiv:0911.4473.
[115] M. Barot, D. Kussin and H. Lenzing, Extremal properties for concealed-canonical algebras, Colloq. Math.130 (2013) 183 [arXiv:1208.3761]. · Zbl 1288.16014 · doi:10.4064/cm130-2-4
[116] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in Representation Theory of Algebras, AMS, CMS Conf. Proc.18 (1996) 455. · Zbl 0863.16013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.