×

A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver. (English) Zbl 1507.74081

Summary: We present a generalised phase field-based formulation for predicting fatigue crack growth in metals. The theoretical framework aims at covering a wide range of material behaviour. Different fatigue degradation functions are considered and their influence is benchmarked against experiments. The phase field constitutive theory accommodates the so-called AT1, AT2, and phase field-cohesive zone (PF-CZM) models. In regards to material deformation, both non-linear kinematic and isotropic hardening are considered, as well as the combination of the two. Moreover, a monolithic solution scheme based on quasi-Newton algorithms is presented and shown to significantly outperform staggered approaches. The potential of the computational framework is demonstrated by investigating several 2D and 3D boundary value problems of particular interest. Constitutive and numerical choices are compared and insight is gained into their differences and similarities. The framework enables predicting fatigue crack growth in arbitrary geometries and for materials exhibiting complex (cyclic) deformation and damage responses. The finite element code developed is made freely available at https://www.empaneda.com/codes/.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74A45 Theories of fracture and damage
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Suresh, S., Fatigue of Materials (1998), Cambridge University Press: Cambridge University Press Cambridge, UK
[2] Wöhler, A., Über die Festigkeitsversuche mit Eisen und Stahl, Zeitschrift Bauwesen, 20, 73-106 (1870)
[3] Coffin, J. L., A study of the effects of cyclic thermal stresses on a ductile metal, Trans. ASME, 76, 931-950 (1954)
[4] Manson, S. S., Behavior of materials under conditions of thermal stress, National Advisory Committee for AeronauticsTech. rep., 136-138 (1954), National Advisory Committee for Aeronautics
[5] Nip, K. H.; Gardner, L.; Davies, C. M.; Elghazouli, A. Y., Extremely low cycle fatigue tests on structural carbon steel and stainless steel, J. Construct. Steel Res., 66, 1, 96-110 (2010)
[6] Nip, K. H.; Gardner, L.; Elghazouli, A. Y., Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members, Eng. Struct., 32, 2, 424-441 (2010)
[7] Griffith, A. A., The phenomena of rupture and flow in solids, Philos. Trans. A, 221, 163-198 (1920) · Zbl 1454.74137
[8] G.R. Irwin, onset of fast crack propagation in high strength steel and aluminum alloys, in: Sagamore Research Conference Proceedings Vol. 2, 1956, pp. 289-305.
[9] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[10] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42, 5, 577-685 (1989) · Zbl 0691.49036
[11] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[12] Bourdin, B.; Francfort, G. A.; Marigo, J. J., The Variational Approach To Fracture, 1-164 (2008), Springer Netherlands · Zbl 1425.74004
[13] Miehe, C.; Welshinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[14] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778 (2010) · Zbl 1231.74022
[15] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[16] Geelen, R. J.; Liu, Y.; Hu, T.; Tupek, M. R.; Dolbow, J. E., A phase-field formulation for dynamic cohesive fracture, Comput. Methods Appl. Mech. Engrg., 348, 680-711 (2019) · Zbl 1440.74359
[17] Molnár, G.; Gravouil, A.; Seghir, R.; Réthoré, J., An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation, Comput. Methods Appl. Mech. Engrg., 365, Article 113004 pp. (2020) · Zbl 1442.74211
[18] Alessi, R.; Freddi, F., Failure and complex crack patterns in hybrid laminates: A phase-field approach, Composites B, 179, Article 107256 pp. (2019)
[19] Quintanas-Corominas, A.; Turon, A.; Reinoso, J.; Casoni, E.; Paggi, M.; Mayugo, J., A phase field approach enhanced with a cohesive zone model for modeling delamination induced by matrix cracking, Comput. Methods Appl. Mech. Engrg., 358, Article 112618 pp. (2020) · Zbl 1441.74195
[20] Mandal, T. K.; Nguyen, V. P.; Wu, J.-Y., A length scale insensitive anisotropic phase field fracture model for hyperelastic composites, Int. J. Mech. Sci., 188, Article 105941 pp. (2020)
[21] Tan, W.; Martínez-Pañeda, E., Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites, Compos. Sci. Technol., 202, Article 108539 pp. (2021)
[22] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[23] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[24] Isfandbod, M.; Martínez-Pañeda, E., A mechanism-based multi-trap phase field model for hydrogen assisted fracture, Int. J. Plast., 144, Article 103044 pp. (2021)
[25] Martínez-Pañeda, E.; Golahmar, A.; Niordson, C., A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 342, 742-761 (2018) · Zbl 1440.82005
[26] Duda, F. P.; Ciarbonetti, A.; Toro, S.; Huespe, A. E., A phase-field model for solute-assisted brittle fracture in elastic-plastic solids, Int. J. Plast., 102, 16-40 (2018)
[27] Wu, J.-Y.; Mandal, T. K.; Nguyen, V. P., A phase-field regularized cohesive zone model for hydrogen assisted cracking, Comput. Methods Appl. Mech. Engrg., 358, Article 112614 pp. (2020) · Zbl 1441.74219
[28] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., Applications of phase field fracture in modelling hydrogen assisted failures, Theor. Appl. Fract. Mech., 110, Article 102837 pp. (2020)
[29] Hirshikesh, P. K.; Natarajan, S.; Annabattula, R. K.; Martínez-Pañeda, E., Phase field modelling of crack propagation in functionally graded materials, Composites B, 169, 239-248 (2019)
[30] Kumar, P. K.A. V.; Dean, A.; Reinoso, J.; Lenarda, P.; Paggi, M., Phase field modeling of fracture in functionally graded materials: G -convergence and mechanical insight on the effect of grading, Thin-Walled Struct., 159, Article 107234 pp. (2021)
[31] Wu, J.-Y.; Nguyen, V. P.; Nguyen, C. T.; Sutula, D.; Sinaie, S.; Bordas, S., Phase-field modelling of fracture, Adv. Appl. Mech., 53, 1-183 (2020)
[32] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., An assessment of phase field fracture: crack initiation and growth, Phil. Trans. R. Soc. A, 379, Article 20210021 pp. (2021)
[33] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech., 190, 53-73 (2018)
[34] Lo, Y. S.; Borden, M. J.; Ravi-Chandar, K.; Landis, C. M., A phase-field model for fatigue crack growth, J. Mech. Phys. Solids, 132, Article 103684 pp. (2019) · Zbl 1480.74019
[35] Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L., A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach, Comput. Methods Appl. Mech. Engrg., 361, Article 112731 pp. (2020) · Zbl 1442.74195
[36] Simoes, M.; Martínez-Pañeda, E., Phase field modelling of fracture and fatigue in shape memory alloys, Comput. Methods Appl. Mech. Engrg., 373, Article 113504 pp. (2021) · Zbl 1506.74022
[37] Hasan, M. M.; Baxevanis, T., A phase-field model for low-cycle fatigue of brittle materials, Int. J. Fatigue, 150, Article 106297 pp. (2021)
[38] Golahmar, A.; Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for hydrogen-assisted fatigue, Int. J. Fatigue, 154, Article 106521 pp. (2022)
[39] Seiler, M.; Linse, T.; Hantschke, P.; Kästner, M., An efficient phase-field model for fatigue fracture in ductile materials, Eng. Fract. Mech., 224, Article 106807 pp. (2020)
[40] Haveroth, G. A.; Vale, M. G.; Bittencourt, M. L.; Boldrini, J. L., A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials, Comput. Methods Appl. Mech. Engrg., 364, Article 112962 pp. (2020) · Zbl 1442.74020
[41] Ulloa, J.; Wambacq, J.; Alessi, R.; Degrande, G.; François, S., Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation, Comput. Methods Appl. Mech. Engrg., 373, Article 113473 pp. (2021) · Zbl 1506.74342
[42] Provatas, N.; Elder, K., Phase-Field Methods in Materials Science and Engineering (2011), John Wiley & Sons: John Wiley & Sons Weinheim, Germany
[43] Cui, C.; Ma, R.; Martínez-Pañeda, E., A phase field formulation for dissolution-driven stress corrosion cracking, J. Mech. Phys. Solids, 147, Article 104254 pp. (2021)
[44] Gurtin, M.; Fried, E.; Anand, L., the Mechanics and Thermodynamics of Continua (2010), Cambridge University Press: Cambridge University Press Cambridge, UK
[45] Duda, F.; Ciarbonetti, A.; Sánchez, P. J.; Huespe, A., A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269-296 (2015)
[46] Narayan, S.; Anand, L., A gradient-damage theory for fracture of quasi-brittle materials, J. Mech. Phys. Solids, 129, 119-146 (2019) · Zbl 1467.74076
[47] Alessi, R.; Ambati, M.; Gerasimov, T.; Vidoli, S.; De Lorenzis, L., Comparison of phase-field models of fracture coupled with plasticity, (nate, M. C.E. O.; Peric, D.; de Souza- Neto, E., Advances in Computational Plasticity (2018), Springer Nature), 1-21 · Zbl 1493.74006
[48] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[49] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32 (2016)
[50] Shishvan, S. S.; Assadpour-asl, S.; Martínez-Pañeda, E., A mechanism-based gradient damage model for metallic fracture, Eng. Fract. Mech., 255, Article 107927 pp. (2021)
[51] Kristensen, P. K.; Niordson, C. F.; Martínez-Pañeda, E., A phase field model for elastic-gradient-plastic solids undergoing hydrogen embrittlement, J. Mech. Phys. Solids, 143, Article 104093 pp. (2020)
[52] Bleyer, J.; Alessi, R., Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Engrg., 336, 213-236 (2018) · Zbl 1440.74354
[53] Navidtehrani, Y.; Betegón, C.; Martínez-Pañeda, E., A unified abaqus implementation of the phase field fracture method using only a user material subroutine, Materials, 14, 8, 1913 (2021)
[54] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence, Comm. Pure Appl. Math., 43, 999-1036 (1991) · Zbl 0722.49020
[55] Pham, K.; Amor, H.; Marigo, J. J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 4, 618-652 (2011)
[56] Wu, J.-Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[57] Wu, J.-Y.; Nguyen, V., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[58] Lemaitre, J.; Chaboche, J.-L., Mechanics of Solid Materials, 550 (1990), Cambridge University Press: Cambridge University Press New York · Zbl 0743.73002
[59] Ziegler, H., A modification of prager’s hardening rule, Quart. Appl. Math., 17, 1, 55-65 (1959) · Zbl 0086.18704
[60] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405 (2015) · Zbl 1398.74270
[61] Wu, J.-Y.; Huang, Y.; Nguyen, V., On the BFGS monolithic algorithm for the unified phase field damage theory, Comput. Methods Appl. Mech. Engrg., 360, Article 112704 pp. (2020) · Zbl 1441.74196
[62] Kristensen, P. K.; Martínez-Pañeda, E., Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme, Theor. Appl. Fract. Mech., 107, Article 102446 pp. (2020)
[63] Li, D. H.; Fukushima, M., A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129, 1-2, 15-35 (2001) · Zbl 0984.65055
[64] Lewis, A. S.; Overton, M. L., Nonsmooth optimization via quasi-Newton methods, Math. Program., 141, 1-2, 135-163 (2013) · Zbl 1280.90118
[65] Geradin, M.; Idelsohn, S.; Hogge, M., Computational strategies for the solution of large nonlinear problems via quasi-newton methods, Comput. Struct., 13, 1-3, 73-81 (1981) · Zbl 0456.73072
[66] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Internat. J. Numer. Methods Engrg., 14, 1613-1626 (1979) · Zbl 0419.65070
[67] Smith, R. W.; Hirschberg, M. H.; Manson, S. S., Fatigue Behavior of Materials Under Strain Cycling in Low and Intermediate Life RangeTech. rep. NASA TND-1574, 57 (1963), NASA
[68] Lefebvre, D.; Ellyin, F., Cyclic response and inelastic strain energy in low cycle fatigue, Int. J. Fatigue, 6, 1, 9-15 (1984)
[69] Gong, Y.; Norton, M., Cyclic response and fatigue of steels subjected to strain control with non-zero means, J. Test. Eval., 27, 1, 15-30 (1999)
[70] Yang, X., Low cycle fatigue and cyclic stress ratcheting failure behavior of carbon steel 45 under uniaxial cyclic loading, Int. J. Fatigue, 27, 9, 1124-1132 (2005)
[71] Roe, K.; Siegmund, T., An irreversible cohesive zone model for interface fatigue crack growth simulation, Eng. Fract. Mech., 70, 2, 209-232 (2003)
[72] del Busto, S.; Betegón, C.; Martínez-Pañeda, E., A cohesive zone framework for environmentally assisted fatigue, Eng. Fract. Mech., 185, 210-226 (2017)
[73] Storvik, E.; Both, J. W.; Sargado, J. M.; Nordbotten, J. M.; Radu, F. A., An accelerated staggered scheme for variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 381, Article 113822 pp. (2021) · Zbl 1506.74366
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.