×

zbMATH — the first resource for mathematics

Stabilization of Ziegler’s pendulum by means of the method of vibrational control. (English) Zbl 0712.70038
MSC:
70J25 Stability for problems in linear vibration theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stephenson, A, On induced stability, Philos. mag., 15, 233-236, (1908) · JFM 39.0768.01
[2] Stephenson, A, A new type of dynamical stability, () · JFM 39.0768.02
[3] Stephenson, A, On induced stability, Philos. mag., 17, 765-766, (1909) · JFM 40.0787.01
[4] Hirsch, P, Das pendel mit oszillierendem aufhaengepunkt, Z. angew. math. mech., 10, 41-52, (1930) · JFM 56.0683.01
[5] Klotter, K, Stabilisierung und labilisierung durch schwingungen, Forschung ingenieur-wesenheit, 12, 209-225, (1941) · JFM 67.0778.02
[6] Lowenstern, E.R, The stabilizing effect of imposed oscillations of high frequency on a dynamical system, Philos. mag. ser 7, 13, 458-486, (1932) · Zbl 0004.02803
[7] Bogdanoff, J.L, Influence on the behavior of a dynamical system of some imposed rapid motions of small amplitude, J. acoust. soc. amer., 34, 1055-1062, (1962)
[8] Bogoliubov, N.N, On some statistical methods in mathematical physics, (1945), Ukranian Academy of Science Publishers, [In Russian]
[9] Kapitsa, P.L, The dynamic stability of a pendulum with a vibrating point of suspension, J. exp. theor. phys., 21, 588-598, (1951)
[10] Barr, A.D.S; McWhannel, D.C, Parametric instability in structures under support motion, J. sound vibration, 14, 491-509, (1971) · Zbl 0228.73058
[11] Ness, D.J, Small oscillations of a stabilized, inverted pendulum, Amer. J. phys., 35, 964-967, (1967)
[12] Haacke, S, Bemerkungen zur stabilizierung eines physikalischen pendels, Z. angew. math. mech., 3, 161-169, (1951) · Zbl 0042.17904
[13] Tso, W.K; Asmis, K.G, Parametric excitation of a pendulum with bilinear hysteresis, J. applied mech., 37, 1061-1068, (1970)
[14] Gradewald, R; Moldenhauer, W, Untersuchung der stabilitaet des parametererregten pendels als speziellen rheonichtlinearen Schwinger, Ann. phys., 27, 359-364, (1971)
[15] Menyailov, A.I; Movchan, A.V, Stabilization of a pendulum ring system under conditions of vibration of the base, Izv. akad. nauk SSSR mekh. tverd. tela, 19, 32-36, (1984)
[16] Trave, L; Tarras, A.M; Tilti, A, An application of vibrational control to cancel unstable decentralized fixed modes, IEEE trans. automat. control, AC-30, 283-286, (1985) · Zbl 0554.93061
[17] Meerkov, S.M, Vibrational control theory, J. franklin inst., 303, 117-128, (1977) · Zbl 0358.93014
[18] Meerkov, S.M, Principle of vibrational control: theory and applications, IEEE trans. automat. control, AC-25, 755-762, (1980) · Zbl 0454.93021
[19] Volosov, V.M, The method of averaging, Soviet math. dokl., 2, 221-224, (1961) · Zbl 0127.30902
[20] Volosov, V.M, Higher approximations in averaging, Soviet math. dokl., 2, 382-385, (1961) · Zbl 0127.31001
[21] Sethna, P.R, An extension of the method of averaging, Quart. appl. math., 25, 205-211, (1967) · Zbl 0148.33702
[22] Bogoliubov, N.N; Mitropolski, Yu.A, Asymptotic methods in the theory of non-linear oscillations, (1967), Gordon & Breach New York
[23] Valeev, K.G, Dynamic stabilization of unstable systems, Izv. akad. nauk SSSR mekh. tverd. tela, 16, 9-17, (1971)
[24] Mitchell, R, Stability of the inverted pendulum subjected to almost periodic and stochastic base motion—an application of the method of averaging, Int. J. non-linear mech., 7, 101-123, (1972) · Zbl 0239.70020
[25] Hsu, C.S, On the parametric excitation of a dynamic system having multiple degrees of freedom, J. appl. mech., 30, 367-372, (1963) · Zbl 0127.30503
[26] Howe, M.S, The Mean square stability of an inverted pendulum subject to random parametric excitation, J. sound vibration, 32, 407-421, (1974) · Zbl 0291.70013
[27] Van der Pol, B, Stabiliseering door kleine trillingen, Physica: nederl. tijdschr. natuurk., 5, 157-162, (1925)
[28] Strutt, M.J.O, Stabiliseering en labiliseering door trillingen, Physica: nederl. tijdschr. natuurk., 7, 265-271, (1927)
[29] Sethna, P.R; Hemp, G.W, Non-linear oscillations of a gyroscopic pendulum with an oscillating point of suspension, (), 375-392 · Zbl 0162.12903
[30] Hemp, G.W; Sethna, P.R, On dynamical systems with high frequency parametric excitation, Int. J. non-linear mech., 3, 351-365, (1968) · Zbl 0162.12903
[31] Phelps, F.M; Hunter, J.H, An analytical solution of the inverted pendulum, Amer. J. phys., 33, 285-295, (1965) · Zbl 0136.21503
[32] Joshi, S.S, Inverted pendulum with damping, Amer. J. phys., 34, 533, (1966)
[33] Phelps, F.M; Hunter, J.H, Reply to Joshi’s comments on a damping term in the equations of motion of the inverted pendulum, Amer. J. phys., 34, 533-535, (1966)
[34] Dugundji, J; Chhatpar, C.K, Dynamic stability of a pendulum under parametric excitation, Rev. roumaine sci. tech. Sér. Méc. appl., 15, 741-763, (1970)
[35] Moran, T.J, Transient motions in dynamical systems with high frequency parametric excitation, Int. J. non-linear mech., 5, 633-644, (1970) · Zbl 0233.70016
[36] Blekhman, I.I, The development of the concept of direct separation of motions in non-linear mechanics, (), 127-147 · Zbl 0552.70017
[37] Meerkov, S.M, Vibrational control, Automat. remote control, 34, 201-209, (1973) · Zbl 0259.93042
[38] Meerkov, S.M, Averaging of trajectories of slow dynamic systems, Differential equations, 9, 1239-1245, (1973) · Zbl 0306.34058
[39] Meerkov, S.M; Tsitkin, M.Yu, The effectiveness of the method of vibrational control for dynamic systems described by a differential equation of order n, Automat. remote control, 36, 525-529, (1975) · Zbl 0321.93021
[40] Bellman, R; Bentsman, J; Meerkov, S.M, Non-linear systems with fast parametric oscillations, J. math. anal. appl., 97, 572-589, (1983) · Zbl 0531.34024
[41] Meerkov, S.M, Vibrational stabilizability of distributed parameter systems, J. math. anal. appl., 98, 408-418, (1984) · Zbl 0554.93059
[42] Bellman, R; Bentsman, J; Meerkov, S.M, Stability of fast periodic systems, IEEE trans. automat. control, AC-30, 289-291, (1985) · Zbl 0557.93055
[43] Bellman, R; Bentsman, J; Meerkov, S.M, On vibrational stabilizability of non-linear systems, J. optim. theory appl., 46, 421-430, (1985) · Zbl 0548.93063
[44] Bogdanoff, J.L; Citron, S.J, On the stabilization of the inverted pendulum, (), 3-15
[45] Akulenko, L.D, Control of motion of a non-linear vibratory system by displacement of the equilibrium point, Izv. akad. nauk SSSR mekh. tverd. tela, 13, 1-9, (1978)
[46] Chelomei, V.N, On the possibility of enhancing the stability of elastic systems by means of vibrations, Dokl. USSR acad. sci., 110, 345-347, (1956) · Zbl 0072.19801
[47] Bolotin, V.V, Dynamic stability of elastic systems, (1964), Holden-Day San Francisco · Zbl 0125.15301
[48] Ziegler, H, Die stabilitaetskriterien der elastomechanik, Ingenieur-arch., 20, 49-56, (1952) · Zbl 0047.42606
[49] Herrmann, G; Bungay, R.W, On the stability of elastic systems subjected to non-conservative forces, J. appl. mech., 31, 435-440, (1964)
[50] Herrmann, G; Jong, I.C, On non-conservative stability problems of elastic systems with slight damping, J. appl. mech., 33, 125-132, (1966) · Zbl 0151.39203
[51] Tso, W.K; Fung, D.P.K, Dynamic instability under the combined actions of non-conservative loading and base motion, J. appl. mech., 38, 1074-1076, (1971)
[52] Sanders, J.A; Verlust, F, Averaging methods in non-linear dynamical systems, (1985), Springer-Verlag New York
[53] Herrmann, G, Dynamics and stability of mechanical systems with follower forces, NASA Contractor’s report CR-1782, (1971)
[54] Kane, T.R; Levinson, D.A, Formulation of equations of motion for complex spacecraft, J. guidance control, 3, 99-112, (1980) · Zbl 0435.70027
[55] Kane, T.R; Likins, P.W; Levinson, D.A, Spacecraft dynamics, (1983), McGraw-Hill New York
[56] Kane, T.R; Levinson, D.A, Dynamics: theory and applications, (1985), McGraw-Hill New York · Zbl 0546.70015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.