×

zbMATH — the first resource for mathematics

Isogeometric boundary element for analyzing steady-state heat conduction problems under spatially varying conductivity and internal heat source. (English) Zbl 1451.65216
Summary: This paper proposes an isogeometric boundary element (IGABEM) with the aim to solve the 2D steady-state heat conduction problems under spatially varying conductivity and internal heat source. The IGABEM boundary-domain integral equation is derived underlying the divergence theorem of Gauss and the Laplace equation. The non-uniform rational B-spline (NURBS) basis used in the CAD/CAE industries is applied to approximate both the boundary of problem domain and the unknown physical quantities, and the radial integration method (RIM) is employed to deal with the domain integrals induced by the non-homogeneous thermal conductivity and the internal heat source. The present boundary-domain integral equation is firstly divided into several NURBS patches, upon which the IGABEM can be further defined. The main advantage of the NURBS basis in comparison with the standard piecewise polynomial basis is that there is almost no error in the boundary approximation with IGABEM, which plays a significant role in controlling the accuracy of numerical calculation. Four numerical examples consisting of square regions with cubic and exponential thermal conductivities (with or without internal heat source), annulus region with constant and quadratic conductivities as well as complex region with varying thermal conductivity and complex heat source are provided. The accuracy and convergence of the proposed method are assessed by comparing the present solution with the existing results obtained by several other researchers or ANSYS results, and excellent performance is achieved.
MSC:
65N38 Boundary element methods for boundary value problems involving PDEs
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
Software:
FreeHyTE; NURBS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dargush, G. F.; Banerjee, P. K., Advanced development of the boundary element method for steady-state heat conduction, Internat. J. Numer. Methods Engrg., 28, 9, 2123-2142 (1989) · Zbl 0726.73080
[2] Wu, X.; Tao, W., Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. Heat Mass Transfer, 51, 11-12, 3103-3112 (2008) · Zbl 1144.80356
[3] Huang, D.; Shih, J.; Hsia, H.; Lin, M., Three-phase linear motor heat transfer analysis using the finite-element method, Heat Transfer Eng., 31, 7, 617-624 (2010)
[4] Qin, X.; Zhang, J.; Liu, L.; Li, G., Steady-state heat conduction analysis of solids with small open-ended tubular holes by BFM, Int. J. Heat Mass Transfer, 55, 23-24, 6846-6853 (2012)
[5] Gu, Y.; Chen, W.; He, X., Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media, Int. J. Heat Mass Transfer, 55, 17-18, 4837-4848 (2012)
[6] Bai, Y. G.; Zhang, Y.; Liu, Y. F.; Yang, K.; Gao, X. W., Numerical analysis of a heater with conjugate heat transfer, Adv. Mater. Res., 629, 711-715 (2013)
[7] He, Y.; Yang, H.; Deeks, A. J., An element-free Galerkin scaled boundary method for steady-state heat transfer problems, Numer. Heat Transfer B, 64, 3, 199-217 (2013)
[8] Wang, F.; Lin, G.; Zhou, Y.; Chen, D., Element-free Galerkin scaled boundary method based on moving kriging interpolation for steady heat conduction analysis, Eng. Anal. Bound. Elem., 106, 440-451 (2019) · Zbl 07110354
[9] Wang, W.; Zang, Q.; Wei, Z.; Guo, Z., An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles, Ocean Eng., 189, Article 106367 pp. (2019)
[10] Xie, G.; Wang, L.; Zhang, J.; Zhang, D.; Li, H.; Du, W., Calculation of three-dimensional nearly singular boundary element integrals for steady-state heat conduction, Eng. Anal. Bound. Elem., 60, 137-143 (2015) · Zbl 1403.80029
[11] Zhang, X.; Xiang, H., A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems, Int. J. Heat Mass Transfer, 84, 729-739 (2015), +S1543:S1546
[12] Soares, D.; Godinho, L., Heat conduction analysis by adaptive iterative BEM-FEM coupling procedures, Eng. Anal. Bound. Elem., 73, 79-94 (2016) · Zbl 1403.65229
[13] Rana, S. K.; Jena, A., A BEM formulation of two dimensional steady state heat conduction in exchanger tubes of arbitrary cross sections, Int. J. Heat Mass Transfer, 106, 195-211 (2017)
[14] Duda, P., Simplification of 3D transient heat conduction by reducing it to an axisymmetric heat conduction problem and a new inverse method of the problem solution, Int. J. Heat Mass Transfer, 143, Article 118492 pp. (2019)
[15] Lee, H.; Lee, Y.; Lee, J., A clipping algorithm on non-conformal interface for heat conduction analysis, J. Mech. Sci. Technol., 33, 11, 5537-5546 (2019) · Zbl 1418.91549
[16] Li, W.; Xu, S.; Shao, M., Simulation of two-dimensional steady-state heat conduction problems by a fast singular boundary method, Eng. Anal. Bound. Elem., 108, 149-157 (2019) · Zbl 07127457
[17] Liu, L. H.; Tan, J. Y., Meshless local Petrov-Galerkin approach for coupled radiative and conductive heat transfer, Int. J. Therm. Sci., 46, 7, 672-681 (2007)
[18] Kassab, A. J.; Divo, E., A generalized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity, Eng. Anal. Bound. Elem., 18, 4, 273-286 (1996)
[19] Chen, C., The development of irregular elements for differential quadrature element method steady-state heat conduction analysis, Comput. Method Appl. Math., 170, 1, 1-14 (1999) · Zbl 0989.80027
[20] Mera, N. S.; Elliott, L.; Ingham, D. B.; Lesnic, D., A comparison of boundary element method formulations for steady state anisotropic heat conduction problems, Eng. Anal. Bound. Elem., 25, 2, 115-128 (2001) · Zbl 0982.80009
[21] Ang, W.; Clements, D. L.; Vahdati, N., A dual-reciprocity boundary element method for a class of elliptic boundary value problems for non-homogeneous anisotropic media, Eng. Anal. Bound. Elem., 27, 1, 49-55 (2003) · Zbl 1130.74456
[22] Sladek, J.; Sladek, V.; Zhang, C., A local BIEM for analysis of transient heat conduction with nonlinear source terms in FGMs, Eng. Anal. Bound. Elem., 28, 1, 1-11 (2004) · Zbl 1053.80007
[23] Ochiai, Y., Two-dimensional steady heat conduction in functionally gradient materials by triple-reciprocity boundary element method, Eng. Anal. Bound. Elem., 28, 12, 1445-1453 (2004) · Zbl 1151.80328
[24] Singh, I. V., A numerical solution of composite heat transfer problems using meshless method, Int. J. Heat Mass Transfer, 47, 10-11, 2123-2138 (2004) · Zbl 1050.80006
[25] Singh, A.; Singh, I. V.; Prakash, R., Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int. J. Heat Mass Transfer, 50, 5, 1212-1219 (2007) · Zbl 1124.80366
[26] Zalewski, B. F., Fuzzy boundary element method for material uncertainty in steady state heat conduction, Int. J. Mater. Manuf., 3, 1, 372-379 (2010)
[27] Yu, T. T.; Gong, Z. W., Numerical simulation of temperature field in heterogeneous material with the XFEM, Arch. Civ. Mech. Eng., 13, 2, 199-208 (2013)
[28] Wei, X.; Chen, W.; Chen, B.; Sun, L., Singular boundary method for heat conduction problems with certain spatially varying conductivity, Comput. Math. Appl., 69, 3, 206-222 (2015) · Zbl 1364.65217
[29] Wei, X.; Chen, B.; Chen, S.; Yin, S., An ACA-SBM for some 2d steady-state heat conduction problems, Eng. Anal. Bound. Elem., 71, 101-111 (2016) · Zbl 1403.80007
[30] Feng, S. Z.; Cui, X. Y.; Li, A. M.; Xie, G. Z., A face-based smoothed point interpolation method (FS-PIM) for analysis of nonlinear heat conduction in multi-material bodies, Int J. Therm. Sci., 100, 430-437 (2016)
[31] Gao, X.; Hu, J.; Huang, S., A proper orthogonal decomposition analysis method for multimedia heat conduction problems, Trans. ASME, J. Heat Transfer, 138, 7 (2016)
[32] Ma, Q.; Cui, J.; Li, Z.; Wang, Z., Second-order asymptotic algorithm for heat conduction problems of periodic composite materials in curvilinear coordinates, J. Comput. Appl. Math., 306, 87-115 (2016) · Zbl 1381.80003
[33] Gao, Q.; Cui, H., An efficient and accurate method for transient heat conduction in 1d periodic structures, Int. J. Heat Mass Transfer, 108, 1535-1550 (2017)
[34] She, Z.; Wang, K.; Li, P., Hybrid trefftz polygonal elements for heat conduction problems with inclusions/voids, Comput. Math. Appl., 78, 6, 1978-1992 (2019)
[35] Yarimpabuç, D., A unified approach to hyperbolic heat conduction of the semi-infinite functionally graded body with a time-dependent laser heat source, Iran. J. Sci. Technol., Trans. Mech. Eng., 43, 4, 729-737 (2019)
[36] Rahmani, H.; Norouzi, M.; Birjandi, A. K.; Birjandi, A. K., An exact solution for transient anisotropic heat conduction in composite cylindrical shells, Trans. ASME, J. Heat Transfer, 141, 10 (2019)
[37] Gao, X.; Ding, J.; Cui, M.; Yang, K., Global-element-based free element method for solving non-linear and inhomogeneous heat conduction problems, Eng. Anal. Bound. Elem., 109, 117-128 (2019) · Zbl 07127495
[38] Moldovan, I. D.; Coutinho, A.; Cismaşiu, I., Hybrid-trefftz finite elements for non-homogeneous parabolic problems using a novel dual reciprocity variant, Eng. Anal. Bound. Elem., 106, 228-242 (2019) · Zbl 07110337
[39] Reitzle, D.; Geiger, S.; Kienle, A., Semi-analytical solution of the time-dependent heat equation for three-dimensional anisotropic multi-layered media, Int. J. Heat Mass Transfer, 134, 984-992 (2019)
[40] Deka, B.; Dutta, J., Convergence of finite element methods for hyperbolic heat conduction model with an interface, Comput. Math. Appl. (2020) · Zbl 1446.65108
[41] Gao, X. W., A meshless BEM for isotropic heat conduction problems with heat generation and spatially varying conductivity, Internat. J. Numer Methods Engrg., 66, 9, 1411-1431 (2006) · Zbl 1116.80021
[42] Lin, D. T.W.; Yang, C., The estimation of the strength of the heat source in the heat conduction problems, Appl. Math. Model., 31, 12, 2696-2710 (2007) · Zbl 1141.80010
[43] Zhang, X.; Zhang, P.; Zhang, L., An improved meshless method with almost interpolation property for isotropic heat conduction problems, Eng. Anal. Bound. Elem., 37, 5, 850-859 (2013) · Zbl 1287.80007
[44] Ren, H.; Wang, L.; Zhao, N. A., An interpolating element-free Galerkin method for steady-state heat conduction problems, Int. J. Appl. Mech., 06, 03, Article 1450024 pp. (2014)
[45] Hidayat, M. I.P.; Wahjoedi, B. A.; Parman, S.; Megat Yusoff, P. S.M., Meshless local b-spline-FD method and its application for 2d heat conduction problems with spatially varying thermal conductivity, Appl. Math. Comput., 242, 236-254 (2014) · Zbl 1334.80012
[46] Yao, W.; Yu, B.; Gao, X.; Gao, Q., A precise integration boundary element method for solving transient heat conduction problems, Int. J. Heat Mass Transfer, 78, 883-891 (2014)
[47] Jiang, H.; Dai, H., Analytical solutions for three-dimensional steady and transient heat conduction problems of a double-layer plate with a local heat source, Int. J. Heat Mass Transfer, 89, 652-666 (2015)
[48] Guo, S.; Wu, Q.; Gu, J.; Wang, W.; Li, X., An improved implementation of triple reciprocity boundary element method for three-dimensional steady state heat conduction problems, Eng. Anal. Bound. Elem., 107, 1-11 (2019) · Zbl 07110370
[49] Grebennikov, A. I., Isogeometric approximation of functions of one variable, USSR Comput. Math. Math. Phys., 22, 6, 42-50 (1982) · Zbl 0541.41013
[50] Cirak, F.; Scott, Michael J.; Antonsson, E. K.; Ortiz, M.; Ortiz; Schroder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 2, 137-148 (2000)
[51] Cirak, F.; Ortiz, M.; Ortiz; Schroder, P., Subdivision surfaces: A new paradigm for thin-shell nite-element analysis, Internat. J. Numer. Methods Engrg., 47, 12, 2039-2072 (2000) · Zbl 0983.74063
[52] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Method Appl. Math., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[53] Wu, H.; Ye, W.; Jiang, W., Isogeometric finite element analysis of interior acoustic problems, Appl. Acoust., 100, 63-73 (2015)
[54] Coox, L.; Deckers, E.; Vandepitte, D.; Desmet, W., A performance study of NURBS-based isogeometric analysis for interior two-dimensional time-harmonic acoustics, Comput. Method. Appl. Math., 305, 441-467 (2016) · Zbl 1423.76221
[55] Khajah, T.; Antoine, X.; Bordas, S. P.A., Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems, J. Comput. Acust., 8 (2016)
[56] Khajah, T.; Antoine, X.; Bordas, S. E.P. A., B-spline FEM for time-harmonic acoustic scattering and propagation, J. Comput. Acust. (2018)
[57] Atroshchenko, Elena, Isogeometric collocation in acoustics (2018)
[58] A. Modave, X. Antoine, A. Royer, C. Geuzaine, An efficient domain decomposition method with cross-point treatment for helmholtz problems, in: WAVES 2019 - 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Vienna, Austria, 2019.
[59] Modave, A.; Geuzaine, C.; Antoine, X., Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering, J. Comput. Phys., 401, Article 109029 pp. (2020)
[60] Khajah, T.; Villamizar, V., Highly accurate acoustic scattering isogeometric analysis coupled with local high order farfield expansion ABC, Comput. Method. Appl. Math., 349, 6, 477-498 (2019) · Zbl 1441.76063
[61] Hu, Q.; Xia, Y.; Natarajan, S.; Zilian, A.; Hu, P.; Bordas, S., Isogeometric analysis of thin Reissner-mindlin plates and shells: Locking phenomena and generalized local \(\overline{B}\) method, Comput. Mech., 65, 1323-1341 (2020) · Zbl 07195847
[62] Dsouza, Shaima; Khajah, T.; Antoine, Xavier; Bordas, S. P.A.; Natarajan, Sundararajan, Non uniform rational b-splines and Lagrange approximations for time-harmonic acoustic scattering: convergence, accuracy, absorbing boundary conditions (2020)
[63] Ding, C.; Deokar, R. R.; Lian, H.; Ding, Y.; Li, G.; Cui, X.; Tamma, K. K.; Bordas, S. P.A., Resolving high frequency issues via proper orthogonal decomposition based dynamic isogeometric analysis for structures with dissimilar materials, Comput. Method. Appl. Math., 359, Article 112753 pp. (2020) · Zbl 1441.74301
[64] Lian, H.; Bordas, S. P.A.; Sevilla, R.; Simpson, R. N., Recent developments in CAD/analysis integration (2012)
[65] Bordas, S. P.A.; Rabczuk, T.; Rodenas, J. J.; Moumnassi, Pierre; Belouettar, S., Recent advances towards reducing the meshing and re-meshing burden in computational sciences, (Computational Technology Reviews, vol. 2 (2010), Saxe-Coburg Publications), 51-82
[66] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines, Comput. Method. Appl. Math., 317, 1-41 (2017) · Zbl 1439.74486
[67] Legrain, G., A NURBS enhanced extended finite element approach for unfitted CAD analysis, Comput. Mech., 52, 4, 913-929 (2013) · Zbl 1311.65017
[68] Moumnassi, M.; Belouettar, S.; Béchet, É.; Bordas, S. P.A.; Quoirin, D.; Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Method. Appl. Math., 200, 5, 774-796 (2011) · Zbl 1225.65111
[69] Legrain, G.; Chevaugeon, N.; Dréau, K., High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput. Method. Appl. Math., 241-244, 172-189 (2012) · Zbl 1353.74071
[70] Legrain, G.; Geuzaine, C.; Remacle, J. F.; Moës, N.; Cresta, P.; Gaudin, J., Numerical simulation of CAD thin structures using the extended finite element method and level sets, Finite Elem. Anal. Des., 77, 40-58 (2013)
[71] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids, Comput. Method. Appl. Math., 200, 21-22, 1892-1908 (2011) · Zbl 1228.74091
[72] Sevilla, R.; Fernandez-Mendez, S.; Huerta, A., NURBS-enhanced finite element method (NEFEM), Internat. J. Numer. Methods Engrg., 76, 2, 56-83 (2008) · Zbl 1162.65389
[73] Hu, Q.; Chouly, F.; Hu, P.; Cheng, G.; Bordas, S. P.A., Skew-symmetric nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact, Comput. Method. Appl. Math., 341, 188-220 (2018) · Zbl 1440.74403
[74] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[75] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: Methods and comparison, Comput. Method. Appl. Math., 200, 23, 2021-2031 (2011) · Zbl 1228.65232
[76] Nguyen, T.; Jüttler, B., Parameterization of contractible domains using sequences of harmonic maps, Curves Surf., 501-514 (2012) · Zbl 1352.65073
[77] Xu, G.; Li, M.; Mourrain, B.; Duvigneau, R.; Galligo, A., Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., 252, 275-289 (2013) · Zbl 1349.65079
[78] Xu, G.; Li, M.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in isogeometric analysis, Adv. Geom. Model. Process., 23, 6-254 (2010)
[79] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications, Comput. Aided Des., 45, 2, 395-404 (2013)
[80] Atroshchenko, E.; Tomar, S.; Xu, G., Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super-geometric analysis to geometry-independent field approximation (GIFT), Internat. J. Numer. Methods Engrg., 114, 10, 1131-1159 (2018)
[81] Videla, J.; Anitescu, C.; Khajah, T.; Bordas, S. P.A.; Atroshchenko, E., H- and P-adaptivity driven by recovery and residual-based error estimators for PHT-splines applied to time-harmonic acoustics, Comput. Math. Appl., 77, 9, 2369-2395 (2019)
[82] Pilgerstorfer, E.; Jüttler, B., Bounding the influence of domain parameterization and knot spacing on numerical stability in isogeometric analysis, Comput. Method. Appl. Math., 268, 589-613 (2014) · Zbl 1295.65116
[83] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Method Appl. Math., 209-212, 87-100 (2012) · Zbl 1243.74193
[84] Simpson, R. N.; Bordas, S. P.A.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2d implementation aspects, Comput. Struct., 118, 2-12 (2013)
[85] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured t-splines, Comput. Method. Appl. Math., 254, 197-221 (2013) · Zbl 1297.74156
[86] Lian, H.; Simpson, R. N.; Bordas, S. P.A., Stress analysis without meshing: Isogeometric boundary-element method, Proc. Inst. Civ. Eng.- Eng. Comput. Mech., 166, 2, 88-99 (2013)
[87] Marussig, B.; Zechner, J.; Beer, G., Fast isogeometric boundary element method based on independent field approximation, Comput. Method. Appl. Math., 284, 1, 458-488 (2015) · Zbl 1423.74101
[88] Heltai, L.; Arroyo, M.; Desimone, A., Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput. Method Appl. Math., 268, 514-539 (2014) · Zbl 1295.76022
[89] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Method. Appl. Math., 269, 265-290 (2014) · Zbl 1296.65175
[90] Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A., Non-polynomial spline alternatives in isogeometric symmetric Galerkin BEM, Appl. Numer. Math., 116, 10-23 (2017) · Zbl 1372.65316
[91] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Linear elastic fracture simulation directly from CAD: 2d NURBS-based implementation and role of tip enrichment, Int. J. Fract., 204, 1, 55-78 (2017)
[92] Chen, L.; Liu, C.; Zhao, W.; Liu, L., An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Method. Appl. Math., 336, 507-532 (2018) · Zbl 1440.74286
[93] An, Z.; Yu, T.; Bui, T. Q.; Wang, C.; Trinh, N. A., Implementation of isogeometric boundary element method for 2-d steady heat transfer analysis, Adv. Eng. Softw., 116, 36-49 (2018)
[94] Beer, G.; Duenser, C., Isogeometric boundary element analysis of problems in potential flow, Comput. Method Appl. Math., 347, 517-532 (2019) · Zbl 1440.76102
[95] Chen, L.; Marburg, S.; Zhao, W.; Liu, C.; Chen, H., Implementation of isogeometric fast multipole boundary element methods for 2d half-space acoustic scattering problems with absorbing boundary condition, J. Theor. Comput. Acoust., 27, 2 (2019)
[96] Chen, L. L.; Lian, H.; Liu, Z.; Chen, H. B.; Atroshchenko, E.; Bordas, S. P.A., Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods, Comput. Method. Appl. Math., 355, 926-951 (2019) · Zbl 1441.74290
[97] Zang, Q.; Liu, J.; Lu, L.; Lin, G., A NURBS-based isogeometric boundary element method for analysis of liquid sloshing in axisymmetric tanks with various porous baffles, Eur. J. Mech. B Fluids (2020) · Zbl 07198448
[98] Gillebaart, E.; De Breuker, R., Low-fidelity 2d isogeometric aeroelastic analysis and optimization method with application to a morphing airfoil, Comput. Method Appl. Math., 305, 512-536 (2016) · Zbl 1423.76177
[99] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 972-1017 (2016) · Zbl 1352.74467
[100] Chen, L.; Lu, C.; Lian, H.; Liu, Z.; Zhao, W.; Li, S.; Chen, H.; Bordas, S. P.A., Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods, Comput. Method. Appl. Math., 362, Article 112806 pp. (2020) · Zbl 1439.74263
[101] Stroud, A. H.; Secrest, Don, Gaussian Quadrature Formulas (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey, 90-92 and 301-305 · Zbl 0156.17002
[102] Gao, X., The radial integration method for evaluation of domain integrals with boundary-only discretization, Eng. Anal. Bound. Elem., 26, 10, 905-916 (2002) · Zbl 1130.74461
[103] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary Element Techniques (1984), Springer-Verlag: Springer-Verlag Berlin and New York · Zbl 0556.73086
[104] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: An overview and computer implementation aspects, Math. Comput. Simul., 117, 89-116 (2015)
[105] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer-Verlag New York Inc.: Springer-Verlag New York Inc. New York, NY, USA · Zbl 0868.68106
[106] Greville, T. N.E., Numerical procedures for interpolation by spline functions, J. Soc. Ind. Appl. Math. Ser. B Numer. Anal., 1, 1, 53-68 (1964) · Zbl 0141.33602
[107] Hidayat, M. I.P.; Ari-Wahjoedi, B.; Setyamartana, P.; Megat Yusoff, P. S.M.; Rao, T. V.V. L., Meshless local b-spline basis functions-FD method and its application for heat conduction problem with spatially varying heat generation, AMM, 465-466, 490-495 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.